by
Sarah T. Plummer;
Christoph P. Hornik;
Hamilton Baker;
Gregory A. Fleming;
Susan Foerster;
Matthew Ferguson;
Andrew C. Glatz;
Russel Hirsch;
Jeffrey P. Jacobs;
Kyong-Jin Lee;
Alan B. Lewis;
Jennifer S. Li;
Mary Martin;
Diego Porras;
Wolfgang A. K. Radtke;
John F. Rhodes;
Julie A. Vincent;
Jeffrey D. Zampi;
Kevin D. Hill
Objectives: Aortic arch reconstruction in children with single ventricle lesions may predispose to circulatory inefficiency and maladaptive physiology leading to increased myocardial workload. We sought to describe neoaortic anatomy and physiology, risk factors for abnormalities, and impact on right ventricular function in patients with single right ventricle lesions after arch reconstruction. Methods: Prestage II aortic angiograms from the Pediatric Heart Network Single Ventricle Reconstruction trial were analyzed to define arch geometry (Romanesque [normal], crenel [elongated] , or gothic [angular]), indexed neoaortic dimensions, and distensibility. Comparisons were made with 50 single-ventricle controls without prior arch reconstruction. Factors associated with ascending neoaortic dilation, reduced distensibility, and decreased ventricular function on the 14-month echocardiogram were evaluated using univariate and multivariable logistic regression. Results: Interpretable angiograms were available for 326 of 389 subjects (84%). Compared with controls, study subjects more often demonstrated abnormal arch geometry (67% vs 22%, P < .01) and had increased ascending neoaortic dilation (Z score 3.8 ± 2.2 vs 2.6 ± 2.0, P < .01) and reduced distensibility index (2.2 ± 1.9 vs 8.0 ± 3.8, P < .01). Adjusted odds of neoaortic dilation were increased in subjects with gothic arch geometry (odds ratio [OR], 3.2 vs crenel geometry, P < .01) and a right ventricle-pulmonary artery shunt (OR, 3.4 vs Blalock–Taussig shunt, P < .01) but were decreased in subjects with aortic atresia (OR, 0.7 vs stenosis, P < .01) and those with recoarctation (OR, 0.3 vs no recoarctation, P = .04). No demographic, anatomic, or surgical factors predicted reduced distensibility. Neither dilation nor distensibility predicted reduced right ventricular function. Conclusions: After Norwood surgery, the reconstructed neoaorta demonstrates abnormal anatomy and physiology. Further study is needed to evaluate the longer-term impact of these features.
Total cavopulmonary connection is the result of a series of palliative surgical repairs performed on patients with single ventricle heart defects. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Although varying degrees of flow pulsatility have been observed in vivo, non-pulsatile (time-averaged) boundary conditions have traditionally been assumed in hemodynamic modeling, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations with both pulsatile and non-pulsatile boundary conditions were performed for 24 patients with different anatomies and flow boundary conditions from Georgia Tech database. Flow structures, energy dissipation rates and pressure drops were compared under rest and simulated exercise conditions. It was found that flow pulsatility is the primary factor in determining the appropriate choice of boundary conditions, whereas the anatomic configuration and cardiac output had secondary effects. Results show that the hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there was a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence was significant. It was shown that when wPI < 30%, the relative error in hemodynamic predictions using time-averaged boundary conditions was less than 10% compared to pulsatile simulations. In addition, when wPI < 50, the relative error was less than 20%. A correlation was introduced to relate wPI to the relative error in predicting the flow metrics with non-pulsatile flow conditions.
The Fontan procedure, although an imperfect solution for children born with a single functional ventricle, is the only reconstruction at present short of transplantation. The haemodynamics associated with the total cavopulmonary connection, the modern approach to Fontan, are severely altered from the normal biventricular circulation and may contribute to the long-term complications that are frequently noted. Through recent technological advances, spear-headed by advances in medical imaging, it is now possible to virtually model these surgical procedures and evaluate the patient-specific haemodynamics as part of the pre-operative planning process. This is a novel paradigm with the potential to revolutionise the approach to Fontan surgery, help to optimise the haemodynamic results, and improve patient outcomes. This review provides a brief overview of these methods, presents preliminary results of their clinical usage, and offers insights into its potential future directions.