Skip to navigation Skip to content
  • Woodruff
  • Business
  • Health Sciences
  • Law
  • MARBL
  • Oxford College
  • Theology
  • Schools
    • Undergraduate

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing

      Community

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing
    • Graduate

      • Business School
      • Graduate School
      • School of Law
      • School of Medicine
      • School of Nursing
      • School of Public Health
      • School of Theology
  • Libraries
    • Libraries

      • Robert W. Woodruff
      • Business
      • Chemistry
      • Health Sciences
      • Law
      • MARBL
      • Music & Media
      • Oxford College
      • Theology
    • Library Tools

      • Course Reserves
      • Databases
      • Digital Scholarship (ECDS)
      • discoverE
      • eJournals
      • Electronic Dissertations
      • EmoryFindingAids
      • EUCLID
      • ILLiad
      • OpenEmory
      • Research Guides
  • Resources
    • Resources

      • Administrative Offices
      • Emory Healthcare
      • Academic Calendars
      • Bookstore
      • Campus Maps
      • Shuttles and Parking
      • Athletics: Emory Eagles
      • Arts at Emory
      • Michael C. Carlos Museum
      • Emory News Center
      • Emory Report
    • Resources

      • Emergency Contacts
      • Information Technology (IT)
      • Outlook Web Access
      • Office 365
      • Blackboard
      • OPUS
      • PeopleSoft Financials: Compass
      • Careers
      • Human Resources
      • Emory Alumni Association
  • Browse
    • Works by Author
    • Works by Journal
    • Works by Subject
    • Works by Dept
    • Faculty by Dept
  • For Authors
    • How to Submit
    • Deposit Advice
    • Author Rights
    • Publishing Your Data
    • FAQ
    • Emory Open Access Policy
    • Open Access Fund
  • About OpenEmory
    • About OpenEmory
    • About Us
    • Citing Articles
    • Contact Us
    • Privacy Policy
    • Terms of Use
 
Contact Us

Filter Results:

Year

  • 2010 (1)

Author

  • Liedtke, Carole M. (1)
  • Wang, Yanhua (1)

Subject

  • Biophysics, Medical (1)

Journal

  • American Journal of Physiology - Renal Physiology (1)

Keyword

  • concentr (1)
  • hyperton (1)
  • perfus (1)
  • signal (1)
  • tubul (1)
  • urin (1)
  • vasopressin (1)

Author department

  • Medicine: Nephrology (1)

Search Results for all work with filters:

  • Klein, Janet D
  • Sands, Jeff M
  • Biology, Physiology
  • calcium

Work 1 of 1

Sorted by relevance

Article

Protein kinase C regulates urea permeability in the rat inner medullary collecting duct

by Yanhua Wang; Carole M. Liedtke; Janet D Klein; Jeff M Sands

2010

Subjects
  • Biology, Physiology
  • Biophysics, Medical
  • View on PubMed Central
  • View Abstract

Abstract:Close

Hypertonicity increases urea transport independently of, as well as synergistically with, vasopressin in the inner medullary collect duct (IMCD). We previously showed that hypertonicity does not increase the level of cAMP in the IMCD, but it does increase the level of intracellular calcium. Since we also showed that hypertonicity increases both the phosphorylation and biotinylation of the urea transporters UT-A1 and UT-A3, this would suggest involvement of a calcium-dependent protein kinase in the regulation of urea transport in the inner medulla. In this study, we investigated whether protein kinase C (PKC), which is present in the IMCD, is a regulator of urea permeability. We tested the effect of PKC inhibitors and activators on urea permeability in the isolated, perfused rat terminal IMCD. Increasing osmolality from 290 to 690 mosmol/kgH2O significantly stimulated (doubled) urea permeability; it returned to control levels on inhibition of PKC with either 10 μM chelerythrine or 50 μM rottlerin. To determine the potential synergy between vasopressin and PKC, phorbol dibutyrate (PDBu) was used to stimulate PKC. Vasopressin stimulated urea permeability 247%. Although PDBu alone did not change basal urea permeability, in the presence of vasopressin, it significantly increased urea permeability an additional 92%. The vasopressin and PDBu-stimulated urea permeability was reduced to AVP alone levels by inhibition of PKC. We conclude that hypertonicity stimulates urea transport through a PKC-mediated phosphorylation. Whether PKC directly phosphorylates UT-A1 and/or UT-A3 or phosphorylates it as a consequence of a cascade of activations remains to be determined.
Site Statistics
  • 16,941
  • Total Works
  • 3,664,978
  • Downloads
  • 1,140,889
  • Downloads This Year
  • 6,807
  • Faculty Profiles

Copyright © 2016 Emory University - All Rights Reserved
540 Asbury Circle, Atlanta, GA 30322-2870
(404) 727-6861
Privacy Policy | Terms & Conditions

v2.2.8-dev

Contact Us Recent and Popular Items
Download now