The use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in neuroscience has rapidly expanded in rodent studies but has lagged behind in nonhuman primate (NHP) experiments, slowing the development of this method for therapeutic use in humans. One reason for the slow adoption of DREADD technology in primates is that the pharmacokinetic properties and bioavailability of clozapine-n-oxide (CNO), the most commonly used ligand for human muscarinic (hM) DREADDs, are not fully described in primates. We report an extensive pharmacokinetic study using subcutaneous (SC) administration of CNO in five adult rhesus monkeys. CNO reached maximal plasma and cerebrospinal fluid (CSF) concentrations within 2 h after injection, with an observed dose-dependent increase in levels following a 3 and 10 mg/kg SC dose. Since CSF concentrations were below values predicted from unbound plasma concentrations, we investigated whether CNO was restricted from the CNS through active transport at the blood-brain barrier. In vitro assessment demonstrated that CNO is a substrate for P-glycoprotein (Pgp; efflux ratio, 20), thus providing a likely mechanism limiting CNO levels in the CNS. Furthermore, CNO is metabolized to the psychoactive compounds clozapine and n-desmethylclozapine in monkeys. The concentrations of clozapine detected in the CSF are sufficient to activate several types of receptor (including the hM-DREADDs). Our results suggest that CNO metabolism and distribution may interfere with reproducibility and interpretation of DREADD-related experiments in NHPs and calls for a re-evaluation of the use of CNO in DREADD-related experiments in NHPs along with the need to test alternative compounds.
by
N. Dedic;
M.L. Poehlmann;
J.S. Richter;
D. Mehta;
D. Czamara;
M.W. Metzger;
J. Dine;
B.T. Bedenk;
J. Hartmann;
K.V. Wagner;
A. Jurik;
Lynn Almli;
Adriana Lori;
S. Moosmang;
F. Hofmann;
C.T. Wotjak;
G. Rammes;
M. Eder;
Amy Y Chen;
Kerry Ressler;
W. Wurst;
M.V. Schmidt;
Elisabeth B. Binder;
J.M. Deussing
Single-nucleotide polymorphisms (SNPs) in CACNA1C, the α1C subunit of the voltage-gated L-type calcium channel Ca v 1.2, rank among the most consistent and replicable genetics findings in psychiatry and have been associated with schizophrenia, bipolar disorder and major depression. However, genetic variants of complex diseases often only confer a marginal increase in disease risk, which is additionally influenced by the environment. Here we show that embryonic deletion of Cacna1c in forebrain glutamatergic neurons promotes the manifestation of endophenotypes related to psychiatric disorders including cognitive decline, impaired synaptic plasticity, reduced sociability, hyperactivity and increased anxiety. Additional analyses revealed that depletion of Cacna1c during embryonic development also increases the susceptibility to chronic stress, which suggest that Ca v 1.2 interacts with the environment to shape disease vulnerability. Remarkably, this was not observed when Cacna1c was deleted in glutamatergic neurons during adulthood, where the later deletion even improved cognitive flexibility, strengthened synaptic plasticity and induced stress resilience. In a parallel gene × environment design in humans, we additionally demonstrate that SNPs in CACNA1C significantly interact with adverse life events to alter the risk to develop symptoms of psychiatric disorders. Overall, our results further validate Cacna1c as a cross-disorder risk gene in mice and humans, and additionally suggest a differential role for Ca v 1.2 during development and adulthood in shaping cognition, sociability, emotional behavior and stress susceptibility. This may prompt the consideration for pharmacological manipulation of Ca v 1.2 in neuropsychiatric disorders with developmental and/or stress-related origins.
Chronic cocaine and withdrawal induce significant alterations in nucleus accumbens (NAc) glutamatergic function in humans and rodent models of cocaine addiction. Dysregulation of glutamatergic function of the prefrontal cortical-NAc pathway has been proposed as a critical substrate for unmanageable drug seeking. Previously, we demonstrated significant up-regulation of NMDA, (±)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptor subunit mRNAs and protein levels in the ventral tegmental area (VTA), but not the substantia nigra, of cocaine overdose victims (COD). The present study was undertaken to examine the extent of altered ionotropic glutamate receptor (iGluR) subunit expression in the NAc and the putamen in cocaine overdose victims. Results revealed statistically significant increases in the NAc, but not in the putamen, of NMDA receptor subunit (NR)1 and glutamate receptor subunit (GluR)2/3 wit trends in GluR1 and GluR5 in COD. These results extend our previous finding and indicate pathway-specific alterations in iGluRs in COD. In order to determine that changes were related to cocaine intake and not to other factors in the COD victims, we examined the effects of cocaine intravenous self-administration in rhesus monkeys for 18 months (unit dose of 0.1 mg/kg/injection and daily drug intake of 0.5 mg/kg/session). Total drug intake for the group of four monkeys was 37.9 ± 4.6 mg/kg. Statistically significant elevations were observed for NR1, GluR1, GluR2/3 and GluR5 (p < 0.05) and a trend towards increased NR1 phosphorylated at serine 896 (p = 0.07) in the NAc but not putamen of monkeys self-administering cocaine compared with controls. These results extend previous results by demonstrating an up-regulation of NR1, GluR2/3 and GluR5 in the NAc and suggest these alterations are pathway specific. Furthermore, these changes may mediate persistent drug intake and craving in the human cocaine abuser.
In humans and rodents, stress promotes habit-based behaviors that can interfere with action—outcome decision-making. Further, developmental stressor exposure confers long-term habit biases across rodent—primate species. Despite these homologies, mechanisms remain unclear. We first report that exposure to the primary glucocorticoid corticosterone (CORT) in adolescent mice recapitulates multiple neurobehavioral consequences of stressor exposure, including long-lasting biases towards habit-based responding in a food-reinforced operant conditioning task. In both adolescents and adults, CORT also caused a shift in the balance between full-length tyrosine kinase receptor B (trkB) and a truncated form of this neurotrophin receptor, favoring the inactive form throughout multiple corticolimbic brain regions. In adolescents, phosphorylation of the trkB substrate extracellular signal-regulated kinase 42/44 (ERK42/44) in the ventral hippocampus was also diminished, a long-term effect that persisted for at least 12 wk. Administration of the trkB agonist 7,8-dihydroxyflavone (7,8-DHF) during adolescence at doses that stimulated ERK42/44 corrected long-lasting corticosterone-induced behavioral abnormalities. Meanwhile, viral-mediated overexpression of truncated trkB in the ventral hippocampus reduced local ERK42/44 phosphorylation and was sufficient to induce habit-based and depression-like behaviors. Together, our findings indicate that ventral hippocampal trkB is essential to goal-directed action selection, countering habit-based behavior otherwise facilitated by developmental stress hormone exposure. They also reveal an early-life sensitive period during which trkB—ERK42/44 tone determines long-term behavioral outcomes.
Neuropeptide Y (NPY) has been implicated as a modulator of social behavior, often in a species-specific manner. Comparative studies of closely related vole species are particularly useful for identifying neural systems involved in social behaviors in both voles and humans. In the present study, immunohistochemistry was performed to compare NPY-like immunoreactivity (-ir) in brain tissue of the socially monogamous prairie vole and non-monogamous meadow vole. Species differences in NPY-ir were observed in a number of regions including the cortex, extended amygdala, septal area, suprachiasmatic nucleus, and intergeniculate leaf. Meadow voles had higher NPY-ir in all these regions as compared to prairie voles. No differences were observed in the striatum or hippocampus. The extended amygdala and lateral septum are regions that play a key role in regulation of monogamous behaviors such as pair bonding and paternal care. The present study suggests NPY in these regions may be an additional modulator of these species-specific social behaviors. Meadow voles had moderately higher NPY-ir in a number of hypothalamic regions, especially in the suprachiasmatic nucleus. Meadow voles also had much higher levels of NPY-ir in the intergeniculate leaflet, another key region in the regulation of circadian rhythms. Overall, species differences in NPY-ir were observed in a number of brain regions implicated in emotion, stress, circadian, and social behaviors. These findings provide additional support for a role for the NPY system in species-typical social behaviors.