Urinary bladder cancer is the second commonly diagnosed genitourinary malignancy. Previously, bio-molecular alterations have been observed within certain locations such as chromosome 9, retinoblastoma gene and fibroblast growth factor receptor-3. Solute carrier family 14 member 1 (SLC14A1) gene encodes the type-B urea transporter (UT-B) which facilitates the passive movement of urea across cell membrane, and has recently been related with human malignancies, especially for bladder cancer. Herein, we discussed the SLC14A1 gene and UT-B protein properties, aiming to elucidate the expression behavior of SLC14A1 in human bladder cancer. Furthermore, by reviewing some well-established theories regarding the carcinogenesis of bladder cancer, including several genome wide association researches, we have bridged the mechanisms of cancer development with the aberrant expression of SLC14A1. In conclusion, the altered expression of SLC14A1 gene in human urothelial cancer may implicate its significance as a novel target for research.
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
Growing evidence suggests that early-life interactions among genetic, immune, and environment factors may modulate neurodevelopment and cause psycho-cognitive deficits. Maternal immune activation (MIA) induces autism-like behaviors in offspring, but how it interplays with perinatal brain injury (especially birth asphyxia or hypoxia ischemia [HI]) is unclear. Herein we compared the effects of MIA (injection of poly[I:C] to dam at gestational day 12.5), HI at postnatal day 10, and the combined MIA/HI insult in murine offspring of both sexes. We found that MIA induced autistic-like behaviors without microglial activation but amplified post-HI NFjB signaling, pro-inflammatory responses, and brain injury in offspring. Conversely, HI neither provoked autistic-like behaviors nor concealed them in the MIA offspring. Instead, the dual MIA/HI insult added autistic-like behaviors with diminished synaptic density and reduction of autism-related PSD-95 and Homer-1 in the hippocampus, which were missing in the singular MIA or HI insult. Further, the dual MIA/HI insult enhanced the brain influx of Otx2-positive monocytes that are associated with an increase of perineuronal net-enwrapped parvalbumin neurons. Using CCR2-CreER mice to distinguish monocytes from the resident microglia, we found that the monocytic infiltrates gradually adopted a ramified morphology and expressed the microglial signature genes (Tmem119, P2RY12, and Sall1) in post-MIA/HI brains, with some continuing to express the proinflammatory cytokine TNFa. Finally, genetic or pharmacological obstruction of monocytic influx significantly reduced perineuronal net-enwrapped parvalbumin neurons and autistic-like behaviors in MIA/HI offspring. Together, these results suggest a pathologic role of monocytes in the two-hit (immune plus neonatal HI) model of neurodevelopmental defects.
Uremic cardiomyopathy and muscle atrophy are associated with insulin resistance and contribute to chronic kidney disease (CKD)-induced morbidity and mortality. We hypothesized that restoration of miR-26a levels would enhance exosome-mediated microRNA transfer to improve muscle wasting and cardiomyopathy that occur in CKD.
Methods: Using next generation sequencing and qPCR, we found that CKD mice had a decreased level of miR-26a in heart and skeletal muscle. We engineered an exosome vector that contained Lamp2b, an exosomal membrane protein gene fused with a muscle-specific surface peptide that targets muscle delivery. We transfected this vector into muscle satellite cells and then transduced these cells with adenovirus that expresses miR-26a to produce exosomes encapsulated miR-26a (Exo/miR-26a). Exo/miR-26a was injected once per week for 8 weeks into the tibialis anterior (TA) muscle of 5/6 nephrectomized CKD mice. Results: Treatment with Exo/miR-26a resulted in increased expression of miR-26a in skeletal muscle and heart. Overexpression of miR-26a increased the skeletal muscle cross-sectional area, decreased the upregulation of FBXO32/atrogin-1 and TRIM63/MuRF1 and depressed cardiac fibrosis lesions. In the hearts of CKD mice, FoxO1 was activated, and connective tissue growth factor, fibronectin and collagen type I alpha 1 were increased. These responses were blunted by injection of Exo/miR-26a. Echocardiograms showed that cardiac function was improved in CKD mice treated with Exo/miR-26a.
Conclusion: Overexpression of miR-26a in muscle prevented CKD-induced muscle wasting and attenuated cardiomyopathy via exosome-mediated miR-26a transfer. These results suggest possible therapeutic strategies for using exosome delivery of miR-26a to treat complications of CKD.