Roughly two-thirds of all people report having experienced déjà vu—the odd feeling that a current experience is both novel and a repeat or replay of a previous, unrecalled experience. Reports of an association between déjà vu and seizure aura symptomatology have accumulated for over a century, and frequent déjà vu is also now known to be associated with focal seizures, particularly those of a medial temporal lobe (MTL) origin. A longstanding question is whether seizure-related déjà vu has the same basis and is the same subjective experience as non-seizure déjà vu. Survey research suggests that people who experience both seizure-related and non-seizure déjà vu can often subjectively distinguish between the two. We present a case of a person with a history of focal MTL seizures who reports having experienced both seizure-related and non-seizure common déjà vu, though the non-seizure type was more frequent during this person's youth than it is currently. The patient was studied with a virtual tour paradigm that has previously been shown to elicit déjà vu among non-clinical, young adult participants. The patient reported experiencing déjà vu of the common non-seizure type during the virtual tour paradigm, without associated abnormalities of the intracranial EEG. We situate this work in the context of broader ongoing projects examining the subjective correlates of seizures. The importance for memory research of virtual scenes, spatial tasks, virtual reality (VR), and this paradigm for isolating familiarity in the context of recall failure are discussed.
by
Janina Wilmskoetter;
Natalie Busby;
Xiaosong He;
Lorenzo Caciagli;
Rebecca Roth;
Sigfus Kristinsson;
Kathryn A Davis;
Chris Rorden;
Dani S Bassett;
Julius Fridriksson;
Leonardo Bonilha
Brain structure deteriorates with aging and predisposes an individual to more severe language impairments (aphasia) after a stroke. However, the underlying mechanisms of this relation are not well understood. Here we use an approach to model brain network properties outside the stroke lesion, network controllability, to investigate relations among individualized structural brain connections, brain age, and aphasia severity in 93 participants with chronic post-stroke aphasia. Controlling for the stroke lesion size, we observe that lower average controllability of the posterior superior temporal gyrus (STG) mediates the relation between advanced brain aging and aphasia severity. Lower controllability of the left posterior STG signifies that activity in the left posterior STG is less likely to yield a response in other brain regions due to the topological properties of the structural brain networks. These results indicate that advanced brain aging among individuals with post-stroke aphasia is associated with disruption of dynamic properties of a critical language-related area, the STG, which contributes to worse aphasic symptoms. Because brain aging is variable among individuals with aphasia, our results provide further insight into the mechanisms underlying the variance in clinical trajectories in post-stroke aphasia.
by
Steven C. Cramer;
Steven L Wolf;
Harold P. Adams;
Daofen Chen;
Alexander W. Dromerick;
Kari Dunning;
Caitlyn Ellerbe;
Andrew Grande;
Scott Janis;
Maarteen G. Lansberg;
Ronald M. Lazar;
Yuko Y. Palesch;
Lorie Richards;
Elliot Roth;
Sean I. Savitz;
Lawrence R. Wechsler;
Max Wintermark;
Joseph Broderick
Establishing spatial correspondence between subject and template images is necessary in neuroimaging research and clinical applications such as brain mapping and stereotactic neurosurgery. Our anatomical fiducial (AFID) framework has recently been validated to serve as a quantitative measure of image registration based on salient anatomical features. In this study, we sought to apply the AFIDs protocol to the clinic, focusing on structural magnetic resonance images obtained from patients with Parkinson’s disease (PD). We confirmed AFIDs could be placed to millimetric accuracy in the PD dataset with results comparable to those in normal control subjects. We evaluated subject-to-template registration using this framework by aligning the clinical scans to standard template space using a robust open preprocessing workflow. We found that registration errors measured using AFIDs were higher than previously reported, suggesting the need for optimization of image processing pipelines for clinical grade datasets. Finally, we examined the utility of using point-to-point distances between AFIDs as a morphometric biomarker of PD, finding evidence of reduced distances between AFIDs that circumscribe regions known to be affected in PD including the substantia nigra. Overall, we provide evidence that AFIDs can be successfully applied in a clinical setting and utilized to provide localized and quantitative measures of registration error. AFIDs provide clinicians and researchers with a common, open framework for quality control and validation of spatial correspondence and the location of anatomical structures, facilitating aggregation of imaging datasets and comparisons between various neurological conditions.
Experimental manipulations of sensory feedback during complex behavior have provided valuable insights into the computations underlying motor control and sensorimotor plasticity1. Consistent sensory perturbations result in compensatory changes in motor output, reflecting changes in feedforward motor control that reduce the experienced feedback error. By quantifying how different sensory feedback errors affect human behavior, prior studies have explored how visual signals are used to recalibrate arm movements2,3 and auditory feedback is used to modify speech production4-7. The strength of this approach rests on the ability to mimic naturalistic errors in behavior, allowing the experimenter to observe how experienced errors in production are used to recalibrate motor output.
Songbirds provide an excellent animal model for investigating the neural basis of sensorimotor control and plasticity8,9. The songbird brain provides a well-defined circuit in which the areas necessary for song learning are spatially separated from those required for song production, and neural recording and lesion studies have made significant advances in understanding how different brain areas contribute to vocal behavior9-12. However, the lack of a naturalistic error-correction paradigm - in which a known acoustic parameter is perturbed by the experimenter and then corrected by the songbird - has made it difficult to understand the computations underlying vocal learning or how different elements of the neural circuit contribute to the correction of vocal errors13.
The technique described here gives the experimenter precise control over auditory feedback errors in singing birds, allowing the introduction of arbitrary sensory errors that can be used to drive vocal learning. Online sound-processing equipment is used to introduce a known perturbation to the acoustics of song, and a miniaturized headphones apparatus is used to replace a songbird's natural auditory feedback with the perturbed signal in real time. We have used this paradigm to perturb the fundamental frequency (pitch) of auditory feedback in adult songbirds, providing the first demonstration that adult birds maintain vocal performance using error correction14. The present protocol can be used to implement a wide range of sensory feedback perturbations (including but not limited to pitch shifts) to investigate the computational and neurophysiological basis of vocal learning.
Extramammary Paget disease (EMPD) often involves apocrine gland-bearing locations including vulva and perianal area. EMPD of the scrotum is rare. Twenty patients were identified from the pathology files of 4 institutions between 2000 and 2018. Patients were 63-to 87-year-old (mean: 73 y) with a history of symptoms of between 4 months and 10 years. Two patients had a history of prostate cancer. Follow-up was available in 11 patients for a median of 71 months (range: 8 to 126 mo). Nine of 11 patients (82%) had positive margins, and 73% required reexcisions. Three patients had a focal dermal invasion, 1 of whom reportedly died of another etiology 25 months post diagnosis and 2 were disease-free at 24 and 68 months. No patient had inguinal lymphadenopathy. Two patients were alive with disease. Immunohistochemically, GATA3 and GCDFP15 were expressed in 6/6 cases, CK7 in 8/8 cases, and androgen receptor in 13/13 cases. HER2 was positive in 5/12 cases. PSA was positive in 1 patient who had a history of prostate cancer, whereas other prostate markers (NKX3.1 and prostein) were negative, and CK7 and GCDFP15 were positive, rendering primary EMPD diagnosis. Twelve other cases were negative for PSA and NKX3.1. In conclusion, EMPD of the scrotum has an insidious onset and its nonspecific symptoms can be misdiagnosed as dermatitis or fungal infection. Although localized EMPD has a favorable prognosis, the invasive disease is rare and did not predict metastasis or progression. Margins are frequently positive requiring reexcision. Occasionally, cases can be positive for PSA leading to diagnostic pitfalls.
Sexual function is a vital aspect of human health and is recognized as a critical component of cancer survivorship. Understanding and evaluating the impacts of radiotherapy on female sexual function requires precise knowledge of the organs involved in sexual function and the relationship between radiotherapy exposure and sexual tissue function. Although substantial evidence exists describing the impact of radiotherapy on male erectile tissues and related clinical sexual outcomes, there is very little research in this area in females. The lack of biomedical data in female patients makes it difficult to design studies aimed at optimizing sexual function postradiotherapy for female pelvic malignancies. This scoping review identifies and categorizes current research on the impacts of radiotherapy on normal female erectile tissues, including damage to normal functioning, clinical outcomes of radiation-related female erectile tissue damage, and techniques to spare erectile tissues or therapies to treat such damage. An evaluation of the evidence was performed, and a summary of findings was generated according to Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Extension for Scoping Reviews guidelines. Articles were included in the review that involved normal female erectile tissues and radiotherapy side effects. The results show that little scientific investigation into the impacts of radiotherapy on female erectile tissues has been performed. Collaborative scientific investigations by clinical, basic, and behavioral scientists in oncology and radiotherapy are needed to generate radiobiologic and clinical evidence to advance prospective evaluation, prevention, and mitigation strategies that may improve sexual outcomes in female patients.
The basal ganglia (BG) have long been considered to play an important role in the control of movement and the pathophysiology of movement disorders, such as Parkinson's disease (PD). Studies over the past decades have considerably broadened this view, indicating that the BG participate in multiple, parallel, largely segregated, cortico-subcortical reentrant pathways involving motor, associative and limbic functions. Research has shown that dysfunction within individual circuits is associated not only with movement disorders, but also with neuropsychiatric disorders. Accordingly, a number of movement disorders and neuropsychiatric disorders such as obsessive compulsive disorder and Tourette's syndrome are viewed as "circuit disorders." We here discuss the changes in our current understanding of the anatomic and functional organization of BG circuits and related circuit disorders.
Background: Planar cell polarity (PCP) signaling regulates the coordinated polarization of cells and is required for the normal development and function of many tissues. Previous studies have identified conserved PCP genes, such as Van Gogh-like 2 (Vangl2) and Prickle (Pk), in the regulation of coordinated orientation of inner ear hair cells and female reproductive tract development. Testin shares a PET-LIM homology with Pk. It is not clear whether Testin acts in PCP processes in mammals. Results: We identified Testin as a Vangl2-interacting protein through a 2-hybrid screen with a cochlea cDNA library. Testin is enriched to cell-cell boundaries in the presence of Vangl2 in cultured cells. Genetic inactivation of Testin leads to abnormal hair cell orientation in the vestibule and cellular patterning defects in the cochlea. In addition, Testin genetically interacts with Vangl2 to regulate hair cell orientation in the cochlea and the opening of the vaginal tract.
Conclusions: Our findings suggested Testin as a gene involved in coordinated hair cell orientation in the inner ear and in female reproductive tract development. Furthermore, its genetic interaction with Vangl2 implicated it as a potential molecular link, responsible for mediating the role of Vangl2-containing membranous PCP complexes in directing morphologic polarization. Developmental Dynamics 242:1454-1465, 2013.
Considerable evidence indicates that chronic stress and excess glucocorticoids induce neuronal remodeling in prefrontal cortical (PFC) regions. Adolescence is also characterized by a structural reorganization of PFC neurons, yet interactions between stress- and age-related structural plasticity are still being determined. We quantified dendritic spine densities on apical dendrites of excitatory neurons in the medial prefrontal cortex, prelimbic subregion (PL). Densities decreased across adolescent development, as expected, and spine volume increased. Unexpectedly, exposure to excess corticosterone (CORT) throughout adolescence did not cause additional dendritic spine loss detectable in adulthood. As a positive control dendrite population expected to be sensitive to CORT, we imaged neurons in the orbitofrontal cortex (OFC), confirming CORT-induced dendritic spine attrition on basal arbors of layer V neurons. We next assessed the effects of acute, mild stress in adulthood: On PL neurons, an acute stressor increased the density of mature, mushroom-shaped spines. Meanwhile, on OFC neurons, dendritic spine volumes and lengths were lower in mice exposed to both CORT and an acute stressor (also referred to as a “double hit”). In sum, prolonged exposure to excess glucocorticoids during adolescence can have morphological and also metaplastic consequences, but they are not global. Anatomical considerations are discussed.