Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders.
Functional connectivity between brain regions, measured with resting state functional magnetic resonance imaging, holds great potential for understanding the basis of behavior and neuropsychiatric diseases. Recently it has become clear that correlations between the blood oxygenation level dependent (BOLD) signals from different areas vary over the course of a typical scan (6-10. min in length), though the changes are obscured by standard methods of analysis that assume the relationships are stationary. Unfortunately, because similar variability is observed in signals that share no temporal information, it is unclear which dynamic changes are related to underlying neural events. To examine this question, BOLD data were recorded simultaneously with local field potentials (LFP) from interhemispheric primary somatosensory cortex (SI) in anesthetized rats. LFP signals were converted into band-limited power (BLP) signals including delta, theta, alpha, beta and gamma. Correlation between signals from interhemispheric SI was performed in sliding windows to produce signals of correlation over time for BOLD and each BLP band. Both BOLD and BLP signals showed large changes in correlation over time and the changes in BOLD were significantly correlated to the changes in BLP. The strongest relationship was seen when using the theta, beta and gamma bands. Interestingly, while steady-state BOLD and BLP correlate with the global fMRI signal, dynamic BOLD becomes more like dynamic BLP after the global signal is regressed. As BOLD sliding window connectivity is partially reflecting underlying LFP changes, the present study suggests it may be a valuable method of studying dynamic changes in brain states.