Skip to navigation Skip to content
  • Woodruff
  • Business
  • Health Sciences
  • Law
  • MARBL
  • Oxford College
  • Theology
  • Schools
    • Undergraduate

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing

      Community

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing
    • Graduate

      • Business School
      • Graduate School
      • School of Law
      • School of Medicine
      • School of Nursing
      • School of Public Health
      • School of Theology
  • Libraries
    • Libraries

      • Robert W. Woodruff
      • Business
      • Chemistry
      • Health Sciences
      • Law
      • MARBL
      • Music & Media
      • Oxford College
      • Theology
    • Library Tools

      • Course Reserves
      • Databases
      • Digital Scholarship (ECDS)
      • discoverE
      • eJournals
      • Electronic Dissertations
      • EmoryFindingAids
      • EUCLID
      • ILLiad
      • OpenEmory
      • Research Guides
  • Resources
    • Resources

      • Administrative Offices
      • Emory Healthcare
      • Academic Calendars
      • Bookstore
      • Campus Maps
      • Shuttles and Parking
      • Athletics: Emory Eagles
      • Arts at Emory
      • Michael C. Carlos Museum
      • Emory News Center
      • Emory Report
    • Resources

      • Emergency Contacts
      • Information Technology (IT)
      • Outlook Web Access
      • Office 365
      • Blackboard
      • OPUS
      • PeopleSoft Financials: Compass
      • Careers
      • Human Resources
      • Emory Alumni Association
  • Browse
    • Works by Author
    • Works by Journal
    • Works by Subject
    • Works by Dept
    • Faculty by Dept
  • For Authors
    • How to Submit
    • Deposit Advice
    • Author Rights
    • Publishing Your Data
    • FAQ
    • Emory Open Access Policy
    • Open Access Fund
  • About OpenEmory
    • About OpenEmory
    • About Us
    • Citing Articles
    • Contact Us
    • Privacy Policy
    • Terms of Use
 
Contact Us

Filter Results:

Year

  • 2013 (1)

Author

  • Barnett, William H. (1)
  • Cymbalyuk, Gennady S. (1)
  • Doloc-Mihu, Anca (1)
  • Marin, Boris (1)

Keyword

  • center (1)
  • circuit (1)
  • half (1)
  • neuron (1)
  • oscil (1)

Author department

  • Ofc Research Fund Supprt (1)

Search Results for all work with filters:

  • Calabrese, Ronald
  • Biology, Neuroscience
  • PLoS Computational Biology
  • halfcent

Work 1 of 1

Sorted by relevance

Article

High Prevalence of Multistability of Rest States and Bursting in a Database of a Model Neuron

by Boris Marin; William H. Barnett; Anca Doloc-Mihu; Ronald Calabrese; Gennady S. Cymbalyuk

2013

Subjects
  • Biology, Neuroscience
  • File Download
  • View Abstract

Abstract:Close

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance (An external file that holds a picture, illustration, etc. Object name is pcbi.1002930.e001.jpg)) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of An external file that holds a picture, illustration, etc. Object name is pcbi.1002930.e002.jpg. We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.
Site Statistics
  • 16,812
  • Total Works
  • 3,631,225
  • Downloads
  • 1,107,136
  • Downloads This Year
  • 6,807
  • Faculty Profiles

Copyright © 2016 Emory University - All Rights Reserved
540 Asbury Circle, Atlanta, GA 30322-2870
(404) 727-6861
Privacy Policy | Terms & Conditions

v2.2.8-dev

Contact Us Recent and Popular Items
Download now