Animal studies suggest the neurotransmitter dopamine (DA) plays an important role in decision-making. In rats,DAdepletion decreases tolerance for effort and probability costs, while drugs enhancingDAincrease tolerance for these costs. However, data regarding the effect of DA manipulations on effort and probability costs in humans remain scarce. The current study examined acute effects of d-amphetamine, an indirectDAagonist, on willingness of healthyhumanvolunteers to exert effort for monetary rewards at varying levels of reward value and reward probability. Based on preclinical research, we predicted amphetamine would increase exertion of effort, particularly when reward probability was low. Over three sessions, 17 healthy normal adults received placebo, d-amphetamine 10 mg, and 20 mg under counterbalanced double-blind conditions and completed the Effort Expenditure for Rewards Task. Consistent with predictions, amphetamine enhanced willingness to exert effort, particularly when reward probability was lower. Amphetamine did not alter effects of reward magnitude on willingness to exert effort. Amphetamine sped task performance, but its psychomotor effects were not strongly related to its effects on decision-making. This is the first demonstration in humans that dopaminergic manipulations alter willingness to exert effort for rewards. These findings help elucidate neurochemical substrates of choice, with implications for neuropsychiatric diseases characterized by dopaminergic dysfunction and motivational deficits.
by
Michael T. Treadway;
Joshua W. Buckholtz;
Ronald L. Cowan;
Neil D. Woodward;
Rui Li;
M. Sib Ansari;
Ronald M. Baldwin;
Ashley N. Schwartzman;
Robert M. Kessler;
David H. Zald
Preferences for different combinations of costs and benefits are a key source of variability in economic decision-making. However, the neurochemical basis of individual differences in these preferences is poorly understood. Studies in both animals and humans have demonstrated that direct manipulation of the neurotransmitter dopamine (DA) significantly impacts cost/benefit decision-making, but less is known about how naturally occurring variation in DA systems may relate to individual differences in economic behavior. In the present study, 25 healthy volunteers completed a dual-scan PET imaging protocol with [18F]fallypride and d-amphetamine to measure DA responsivity and separately completed the effort expenditure for rewards task, a behavioral measure of cost/benefit decision-making in humans. We found that individual differences in DA function in the left striatum and ventromedial prefrontal cortex were correlated with a willingness to expend greater effort for larger rewards, particularly when probability of reward receipt was low. Additionally, variability in DA responses in the bilateral insula was negatively correlated with willingness to expend effort for rewards, consistent with evidence implicating this region in the processing of response costs. These findings highlight the role of DA signaling in striatal, prefrontal, and insular regions as key neurochemical mechanisms underlying individual differences in cost/benefit decision-making.