17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.
This study investigated whether women's interest in visual sexual stimuli varied with their hormonal state. Viewing times of 30 women, 15 normal cycling (NC) and 15 oral contracepting (OC), to sexually explicit photos were measured at three different times. NC women were tested during their menstrual, periovulatory, and luteal phases, and OC women were tested at equivalent temporal intervals. Subjects viewed stimuli as long as desired, thus viewing time measured subject interest. Subjective ratings of stimulus sexual attractiveness were obtained on each test. There was no overall relationship between menstrual cycle phase and viewing time. However the participant's menstrual cycle phase during first exposure to sexual stimuli predicted subsequent interest in sexual stimuli during the next two tests. NC women who first viewed stimuli during their periovulatory phase looked longer at the sexual stimuli across all sessions than did women first tested in their luteal phase. OC women first exposed to the sexual stimuli during menstruation looked longer at the stimuli across all sessions than did OC women first exposed at other test phases. Neither current test phase nor initial cycle phase influenced subjective ratings. Women had increased interest in sexual stimuli across all sessions if first exposed to sexual stimuli when endogenous estrogens were most likely highest. These data suggest that women's interest in visual sexual stimuli is modulated by hormones such that the hormonal condition at first exposure possibly determines the stimuli's emotional valence, markedly affecting subsequent interest in sexual stimuli.
Behaviors associated with breeding are seasonally modulated in a variety of species. These changes in behavior are mediated by sex steroids, levels of which likewise vary with season. The effects of androgens on behaviors associated with breeding may in turn be partly mediated by the nonapeptides vasopressin (VP) and oxytocin (OT) in mammals, and vasotocin (VT) in birds. The effects of testosterone (T) on production of these neuropeptides have been well-studied; however, the regulation of VT receptors by T is not well understood. In this study, we investigated steroid-dependent regulation of VT receptor (VTR) mRNA in a seasonally breeding songbird, the white-throated sparrow (Zonotrichia albicollis). We focused on VTR subtypes that have been most strongly implicated in social behavior: V1a and oxytocin-like receptor (OTR). Using in situ hybridization, we show that T-treatment of non-breeding males altered V1a and OTR mRNA expression in several regions associated with seasonal reproductive behaviors. For example, T-treatment increased V1a mRNA expression in the medial preoptic area, bed nucleus of the stria terminalis, and ventromedial hypothalamus. T-treatment also affected both V1a and OTR mRNA expression in nuclei of the song system; some of these effects depended on the presence or absence of a chromosomal rearrangement that affects singing behavior, plasma T, and VT immunolabeling in this species. Overall, our results strengthen evidence that VT helps mediate the behavioral effects of T in songbirds, and suggest that the chromosomal rearrangement in this species may affect the sensitivity of the VT system to seasonal changes in T.