Skip to navigation Skip to content
  • Woodruff
  • Business
  • Health Sciences
  • Law
  • MARBL
  • Oxford College
  • Theology
  • Schools
    • Undergraduate

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing

      Community

      • Emory College
      • Oxford College
      • Business School
      • School of Nursing
    • Graduate

      • Business School
      • Graduate School
      • School of Law
      • School of Medicine
      • School of Nursing
      • School of Public Health
      • School of Theology
  • Libraries
    • Libraries

      • Robert W. Woodruff
      • Business
      • Chemistry
      • Health Sciences
      • Law
      • MARBL
      • Music & Media
      • Oxford College
      • Theology
    • Library Tools

      • Course Reserves
      • Databases
      • Digital Scholarship (ECDS)
      • discoverE
      • eJournals
      • Electronic Dissertations
      • EmoryFindingAids
      • EUCLID
      • ILLiad
      • OpenEmory
      • Research Guides
  • Resources
    • Resources

      • Administrative Offices
      • Emory Healthcare
      • Academic Calendars
      • Bookstore
      • Campus Maps
      • Shuttles and Parking
      • Athletics: Emory Eagles
      • Arts at Emory
      • Michael C. Carlos Museum
      • Emory News Center
      • Emory Report
    • Resources

      • Emergency Contacts
      • Information Technology (IT)
      • Outlook Web Access
      • Office 365
      • Blackboard
      • OPUS
      • PeopleSoft Financials: Compass
      • Careers
      • Human Resources
      • Emory Alumni Association
  • Browse
    • Works by Author
    • Works by Journal
    • Works by Subject
    • Works by Dept
    • Faculty by Dept
  • For Authors
    • How to Submit
    • Deposit Advice
    • Author Rights
    • Publishing Your Data
    • FAQ
    • Emory Open Access Policy
    • Open Access Fund
  • About OpenEmory
    • About OpenEmory
    • About Us
    • Citing Articles
    • Contact Us
    • Privacy Policy
    • Terms of Use
 
Contact Us

Filter Results:

Year

  • 2012 (3)
  • 2010 (2)
  • 2008 (1)
  • 2013 (1)
  • 2016 (1)
  • 2020 (1)
  • 2021 (1)

Author

  • Chen, Guangping (7)
  • Sands, Jeff M (4)
  • Blount, Mitsi A. (3)
  • Frohlich, Otto (3)
  • Klein, Janet D (3)
  • Carter, Conner B. (2)
  • Huang, Haidong (2)
  • Su, Hua (2)
  • Yang, Baoxue (2)
  • Cai, Hui (1)
  • Cummings, Richard (1)
  • Eaton, Douglas C (1)
  • Feng, Xiuyan (1)
  • Fu, Guangbo (1)
  • Ge, Zemei (1)
  • Geng, Xiaoqiang (1)
  • Guo, Zhongying (1)
  • He, Jinzhao (1)
  • Ilori, Titilayo Omolara (1)
  • Kent, Kimilia J. (1)
  • Li, Min (1)
  • Li, Runtao (1)
  • Martin, Christopher F. (1)
  • Meng, Jia (1)
  • Niu, Xiaobing (1)
  • Price, Russ (1)
  • Qian, Xiaoqian (1)
  • Ran, Jianhua (1)
  • Sands, Jeff (1)
  • Shao, Guangying (1)
  • Smith, Tekla D. (1)
  • Song, Xiang (1)
  • Sun, Su'an (1)
  • Wang, Shuyuan (1)
  • Xu, Gang (1)
  • Xu, Yue (1)
  • Yang, Yuan (1)
  • Zhang, Shun (1)
  • Zhao, Yan (1)
  • Zhou, Hong (1)
  • Zhuang, Jieqiu (1)
  • von Bergen, Tobias N. (1)

Subject

  • Biology, Cell (3)
  • Health Sciences, Pathology (2)
  • Health Sciences, Pharmacology (2)
  • Biology, Molecular (1)
  • Chemistry, Biochemistry (1)
  • Engineering, Biomedical (1)
  • Health Sciences, General (1)
  • Health Sciences, Oncology (1)

Journal

  • American Journal of Physiology - Renal Physiology (4)
  • AJP - Renal Physiology (1)
  • Acta Pharmaceutica Sinica B. (1)
  • American Journal of Physiology - Cell Physiology (1)
  • Diagnostic Pathology (1)
  • Journal of Epithelial Biology & Pharmacology (1)
  • Pflügers Archiv European Journal of Physiology (1)

Keyword

  • transport (9)
  • membran (4)
  • protein (4)
  • aquaporin (3)
  • biomedicin (3)
  • life (3)
  • scienc (3)
  • technolog (3)
  • ut (3)
  • 2 (2)
  • a (2)
  • b (2)
  • c (2)
  • concentr (2)
  • lack (2)
  • mice (2)
  • phosphoryl (2)
  • utb (2)
  • vasopressin (2)
  • 1 (1)
  • 256 (1)
  • 3 (1)
  • 486 (1)
  • absorpt (1)
  • accumul (1)
  • administr (1)
  • amp (1)
  • analog (1)
  • angiotensin (1)
  • aqp (1)
  • associ (1)
  • avp (1)
  • biomark (1)
  • bladder (1)
  • camp (1)
  • cancer (1)
  • chloroquin (1)
  • collect (1)
  • cytoskelet (1)
  • defect (1)
  • diabet (1)
  • diuret (1)
  • drug (1)
  • duct (1)
  • endocytosi (1)
  • fluoresc (1)
  • gene (1)
  • genom (1)
  • genomewid (1)
  • glycan (1)
  • glycosyl (1)
  • hybrid (1)
  • identif (1)
  • ii (1)
  • inhibitor (1)
  • inner (1)
  • kinas (1)
  • knockout (1)
  • latrunculin (1)
  • medulla (1)
  • n (1)
  • nanomolar (1)
  • nglycan (1)
  • nkcc (1)
  • optim (1)
  • oral (1)
  • patholog (1)
  • pharmaci (1)
  • pharmacolog (1)
  • physiolog (1)
  • potenc (1)
  • proteolysi (1)
  • rearrang (1)
  • serin (1)
  • sialyl (1)
  • sialyltransferas (1)
  • situ (1)
  • structur (1)
  • traffick (1)
  • transportera (1)
  • urin (1)
  • urotheli (1)
  • uta (1)
  • wide (1)

Author department

  • Medicine: Nephrology (5)
  • Biochem: Admin (1)

Search Results for all work with filters:

  • Biology, Physiology
  • urea
  • Physiology: Admin

Work 1-10 of 10

Sorted by relevance

Article

Candesartan augments compensatory changes in medullary transport proteins in the diabetic rat kidney

by Mitsi A. Blount; Jeff M Sands; Kimilia J. Kent; Tekla D. Smith; Russ Price; Janet D Klein

2008

Subjects
  • Biology, Physiology
  • View on PubMed Central
  • View Abstract

Abstract:Close

Volume depletion due to persistent glucosuria-induced osmotic diuresis is a significant problem in uncontrolled diabetes mellitus (DM). Angiotensin II receptor blockers (ARBs), such as candesartan, slow the progression of chronic kidney disease in patients with DM. However, mice with genetic knockout of components of the renin-angiotensin system have urine concentrating defects, suggesting that ARBs may exacerbate the volume depletion. Therefore, the effect of candesartan on UT-A1, UT-A3, NKCC2, and aquaporin-2 (AQP2) protein abundances was determined in control and 3-wk DM rats. Aldosterone levels in control rats (0.36 ± 0.06 nM) and candesartan-treated rats (0.34 ± 0.14 nM) were the same. DM rats had higher aldosterone levels (1.48 ± 0.37 nM) that were decreased by candesartan (0.97 ± 0.26 nM). Western analysis showed that UT-A1 expression was increased in DM rats compared with controls in inner medullary (IM) tip (158 ± 13%) and base (120 ± 25%). UT-A3 abundance was increased in IM tip (123 ± 11%) and base (146 ± 17%) of DM rats vs. controls. UT-A3 was unchanged in candesartan-treated control rats. In candesartan-treated DM rats, UT-A3 increased in IM tip (160 ± 14%) and base (210 ± 19%). Candesartan-treated DM rats had slightly higher AQP2 in IM (46%, P < 0.05) vs. control rats. NKCC2/BSC1 was increased 145 ± 10% in outer medulla of DM vs. control rats. We conclude that candesartan augments compensatory changes in medullary transport proteins, reducing the losses of solute and water during uncontrolled DM. These changes may represent a previously unrecognized beneficial effect of type 1 ARBs in DM.

Article

Urine concentration in the diabetic mouse requires both urea and water transporters

by Titilayo Omolara Ilori; Mitsi A. Blount; Christopher F. Martin; Jeff M Sands; Janet D Klein

2013

Subjects
  • Biology, Physiology
  • Health Sciences, Pathology
  • View on PubMed Central
  • View Abstract

Abstract:Close

The regulation of the inner medullary collecting duct (IMCD) urea transporters (UT-A1, UT-A3) and aquaporin-2 (AQP2) and their interactions in diabetic animals is unknown. We investigated whether the urine concentrating defect in diabetic animals was a function of AQP2, the UT-As, or both transporters. UT-A1/UT-A3 knockout (UT-A1/A3 KO) mice produce dilute urine. We gave wild-type (WT) and UT-A1/A3 KO mice vasopressin via minipump for 7 days. In WT mice, vasopressin increased urine osmolality from 3,000 to 4,550 mosmol/kgH2O. In contrast, urine osmolality was low (800 mosmol/kgH2O) in the UT-A1/A3 KOs and remained low following vasopressin. Surprisingly, AQP2 protein abundance increased in UT-A1/A3 KO (114%) and WT (92%) mice. To define the role of UT-A1 and UT-A3 in the diabetic responses, WT and UT-A1/A3 KO mice were injected with streptozotocin (STZ). UT-A1/A3 KO mice showed only 40% survival at 7 days post-STZ injection compared with 70% in WT. AQP2 did not increase in the diabetic UT-A1/A3 KO mice compared with a 133% increase in WT diabetic mice. Biotinylation studies in rat IMCDs showed that membrane accumulation of UT-A1 increased by 68% in response to vasopressin in control rats but was unchanged by vasopressin in diabetic rat IMCDs. We conclude that, even with increased AQP2, UT-A1/UT-A3 is essential to optimal urine concentration. Furthermore, UT-A1 may be maximally membrane associated in diabetic rat inner medulla, making additional stimulation by vasopressin ineffective.

Article

Chronic use of chloroquine disrupts the urine concentration mechanism by lowering cAMP levels in the inner medulla

by Tobias N. von Bergen; Mitsi A. Blount

2012

Subjects
  • Biology, Physiology
  • View on PubMed Central
  • View Abstract

Abstract:Close

Chloroquine, a widely used anti-malaria drug, has gained popularity for the treatment of rheumatoid arthritis, systemic lupus erythematosus (SLE), and human immunodeficiency virus (HIV). Unfortunately, chloroquine may also negatively impact renal function for patients whose fluid and electrolyte homeostasis is already compromised by diseases. Chronic administration of chloroquine also results in polyuria, which may be explained by suppression of the antidiuretic response of vasopressin. Several of the transporters responsible for concentrating urine are vasopressin-sensitive including the urea transporters UT-A1 and UT-A3, the water channel aquaporin-2 (AQP2), and the Na+-K+-2Cl− cotransporter (NKCC2). To examine the effect of chloroquine on these transporters, Sprague-Dawley rats received daily subcutaneous injections of 80 mg·kg−1·day−1 of chloroquine for 4 days. Twenty-four hour urine output was twofold higher, and urine osmolality was decreased by twofold in chloroquine-treated rats compared with controls. Urine analysis of treated rats detected the presence chloroquine as well as decreased urine urea and cAMP levels compared with control rats. Western blot analysis showed a downregulation of AQP2 and NKCC2 transporters; however, UT-A1 and UT-A3 abundances were unaffected by chloroquine treatment. Immunohistochemistry showed a marked reduction of UT-A1 and AQP2 in the apical membrane in inner medullary collecting ducts of chloroquine-treated rats. In conclusion, chloroquine-induced polyuria likely occurs as a result of lowered cAMP production. These findings suggest that chronic chloroquine treatment would exacerbate the already compromised fluid homeostasis observed in diseases like chronic kidney disease.

Article

SLC14A1 (UT-B) gene rearrangement in urothelial carcinoma of the bladder: a case report

by Zhongying Guo; Xiaobing Niu; Guangbo Fu; Baoxue Yang; Guangping Chen; Su'an Sun

2020

Subjects
  • Health Sciences, Pathology
  • Health Sciences, Oncology
  • Biology, Cell
  • Biology, Physiology
  • File Download
  • View Abstract

Abstract:Close

Background Bladder cancer (BC) is a common and deadly disease. Over the past decade, a number of genetic alterations have been reported in BC. Bladder urothelium expresses abundant urea transporter UT-B encoded by Slc14a1 gene at 18q12.3 locus, which plays an important role in preventing high concentrated urea-caused cell injury. Early genome-wide association studies (GWAS) showed that UT-B gene mutations are genetically linked to the urothelial bladder carcinoma (UBC). In this study, we examined whether Slc14a1 gene has been changed in UBC, which has never been reported. Case presentation A 59-year-old male was admitted to a hospital with the complaint of gross hematuria for 6 days. Ultrasonography revealed a size of 2.8 × 1.7 cm mass lesion located on the rear wall and dome of the bladder. In cystoscopic examination, papillary tumoral lesions 3.0-cm in total diameter were seen on the left wall of the bladder and 2 cm to the left ureteric orifice. Transurethral resection of bladder tumor (TURBT) was performed. Histology showed high-grade non-muscle invasive UBC. Immunostaining was negative for Syn, CK7, CK20, Villin, and positive for HER2, BRCA1, GATA3. Using a fluorescence in situ hybridization (FISH), Slc14a1 gene rearrangement was identified by a pair of break-apart DNA probes. Conclusions We for the first time report a patient diagnosed with urothelial carcinoma accompanied with split Slc14a1 gene abnormality, a crucial gene in bladder.

Article

Modulation of kidney urea transporter UT-A3 activity by alpha2,6-sialylation

by Xiaoqian Qian; Jeff Sands; Xiang Song; Guangping Chen

2016

Subjects
  • Biology, Physiology
  • Biology, Cell
  • File Download
  • View Abstract

Abstract:Close

Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.

Article

The N-Terminal 81-aa Fragment is Critical for UT-A1 Urea Transporter Bioactivity

by Haidong Huang; Yuan Yang; Douglas C Eaton; Jeff M Sands; Guangping Chen

2010

Subjects
  • Biology, Physiology
  • Health Sciences, Pharmacology
  • Health Sciences, General
  • File Download
  • View Abstract

Abstract:Close

The serine protease, furin, is involved in the activation of a number of proteins most notably epithelial sodium channels (ENaC). The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. UT-A1's amino acid sequence has a consensus furin cleavage site (RSKR) in the N-terminal region. Despite the putative cleavage site, we find that UT-A1, either from the cytosolic or cell surface pool, is not cleaved by furin in CHO cells. This result was further confirmed by an inability of furin to cleave in vitro an 35S-labeled UT-A1 or the 126 N-terminal UT-A1 fragment. Functionally, mutation of the furin site (R78A, R81A) does not affect UT-A1 urea transport activity. However, deletion of the 81-aa N-terminal portion does not affect UT-A1 cell surface trafficking, but seriously impair UT-A1 urea transport activity. Our results indicate that UT-A1 maturation and activation does not require furin-dependent cleavage. The N-terminal 81-aa fragment is required for proper UT-A1 urea transport activity, but its effect is not through changing UT-A1 membrane trafficking.

Article

Depolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking

by Gang Xu; Hua Su; Conner B. Carter; Otto Frohlich; Guangping Chen

2012

Subjects
  • Biology, Physiology
  • Biology, Cell
  • View on PubMed Central
  • View Abstract

Abstract:Close

The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that actin binding to UT-A1's carboxyl terminus was abolished when serine 918 was mutated to alanine. In polarized UT-A1-MDCK cells, cortical filamentous (F) actin colocalizes with UT-A1 at the apical membrane and the subapical cytoplasm. In the cell surface, both actin and UT-A1 are distributed in the lipid raft microdomains. Disruption of the F-actin cytoskeleton by latrunculin B resulted in UT-A1 accumulation in the cell membrane as measured by biotinylation. This effect was mainly due to inhibition of UT-A1 endocytosis in both clathrin and caveolin-mediated endocytic pathways. In contrast, actin depolymerization facilitated forskolin-stimulated UT-A1 trafficking to the cell surface. Functionally, depolymerization of actin by latrunculin B significantly increased UT-A1 urea transport activity in an oocyte expression system. Our study shows that cortical F-actin not only serves as a structural protein, but directly interacts with UT-A1 and plays an important role in controlling UT-A1 cell surface expression by affecting both endocytosis and trafficking, therefore regulating UT-A1 bioactivity.

Article

Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity

by Hua Su; Conner B. Carter; Otto Frohlich; Richard Cummings; Guangping Chen

2012

Subjects
  • Biology, Physiology
  • Chemistry, Biochemistry
  • View on PubMed Central
  • View Abstract

Abstract:Close

Urea transporters UT-A1 and UT-A3 are both expressed in the kidney inner medulla. However, the function of UT-A3 remains unclear. Here, we found that UT-A3, which comprises only the NH2-terminal half of UT-A1, has a higher urea transport activity than UT-A1 in the oocyte and that this difference was associated with differences in N-glycosylation. Heterologously expressed UT-A3 is fully glycosylated with two glycoforms of 65 and 45 kDa. By contrast, UT-A1 expressed in HEK293 cells and oocytes exhibits only a 97-kDa glycosylation form. We further found that N-glycans of UT-A3 contain a large amount of poly-N-acetyllactosamine. This highly glycosylated UT-A3 is more stable and is enriched in lipid raft domains on the cell membrane. Kifunensine, an inhibitor of α-mannosidase that inhibits N-glycan processing beyond high-mannose-type N-glycans, significantly reduced UT-A3 urea transport activity. We then examined the native UT-A1 and UT-A3 glycosylation states from kidney inner medulla and found the ratio of 65 to 45 kDa in UT-A3 is higher than that of 117 to 97 kDa in UT-A1. The highly stable expression of highly glycosylated UT-A3 on the cell membrane in kidney inner medulla suggests that UT-A3 may have an important function in urea reabsorption.

Article

Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways

by Haidong Huang; Xiuyan Feng; Jieqiu Zhuang; Otto Frohlich; Janet D Klein; Hui Cai; Jeff M Sands; Guangping Chen

2010

Subjects
  • Biology, Physiology
  • View on PubMed Central
  • View Abstract

Abstract:Close

Dynamin is a large GTPase involved in several distinct modes of cell endocytosis. In this study, we examined the possible role of dynamin in UT-A1 internalization. The direct relationship of UT-A1 and dynamin was identified by coimmunoprecipitation. UT-A1 has cytosolic NH2 and COOH termini and a large intracellular loop. Dynamin specifically binds to the intracellular loop of UT-A1, but not the NH2 and COOH termini. In cell surface biotinylation experiments, coexpression of dynamin and UT-A1 in HEK293 cells resulted in a decrease of UT-A1 cell surface expression. Conversely, cells expressing dynamin mutant K44A, which is deficient in GTP binding, showed an increased accumulation of UT-A1 protein on the cell surface. Cell plasma membrane lipid raft fractionation experiments revealed that blocking endocytosis with dynamin K44A causes UT-A1 protein accumulation in both the lipid raft and nonlipid raft pools, suggesting that both caveolae- and clathrin-mediated mechanisms may be involved in the internalization of UT-A1. This was further supported by 1) small interfering RNA to knock down either caveolin-1 or μ2 reduced UT-A1 internalization in HEK293 cells and 2) inhibition of either the caveolae pathway by methyl-β-cyclodextrin or the clathrin pathway by concanavalin A caused UT-A1 cell membrane accumulation. Functionally, overexpression of dynamin, caveolin, or μ2 decreased UT-A1 urea transport activity and decreased UT-A1 cell surface expression. We conclude that UT-A1 endocytosis is dynamin-dependent and mediated by both caveolae- and clathrin-coated pit pathways.

Article

Discovery of novel diarylamides as orally active diuretics targeting urea transporters

by Shun Zhang; Yan Zhao; Shuyuan Wang; Min Li; Yue Xu; Jianhua Ran; Xiaoqiang Geng; Jinzhao He; Jia Meng; Guangying Shao; Hong Zhou; Zemei Ge; Guangping Chen; Runtao Li; Baoxue Yang

2021

Subjects
  • Health Sciences, Pharmacology
  • Engineering, Biomedical
  • Biology, Molecular
  • Biology, Physiology
  • File Download
  • View Abstract

Abstract:Close

Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In the present study, a novel UT inhibitor with a diarylamide scaffold was discovered by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively. Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, we found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.
Site Statistics
  • 28,983
  • Total Works
  • 7,497,162
  • Downloads
  • 114,101
  • Downloads This Year
  • 6,807
  • Faculty Profiles

Copyright © 2016 Emory University - All Rights Reserved
540 Asbury Circle, Atlanta, GA 30322-2870
(404) 727-6861
Privacy Policy | Terms & Conditions

v2.2.8-dev

Contact Us Recent and Popular Items
Download now