INTRODUCTION: Solid pseudopapillary tumor of the pancreas (SPTP) is a neoplasm of uncertain origin and indolent biologic behavior with distinctive morphological features occurring predominantly in young women. This tumor has an excellent prognosis compared to neuroendocrine and acinar cell carcinoma, which are close differential diagnoses based on morphology, hence making it crucial to diagnose SPTP correctly. OBJECTIVES: To discuss the cytomorphological features of 10 cases of SPTP reported in two institutions and to evaluate the diagnostic accuracy of endoscopic ultrasound (EUS) guided fine needle aspiration (FNA) cytology in establishing the diagnosis of SPTP. METHODS: Ten diagnosed cases of SPTP were retrieved from the computerized endoscopy and pathology databases of our two tertiary care institutions. Nine patients had subsequent histological follow-up available. Eight patients underwent EUS-FNA while one patient each had ultrasound and computed tomography-guided FNA. The rapid on-site evaluation was carried out in all 10 cases, and additional material was retained for cell block preparation. Immunohistochemical (IHC) stains ranging from synaptophysin, progesterone receptor, chromogranin, β-catenin, CD10, and NSE were applied on cell blocks. Histological sections of all resected specimens were reviewed, and findings were correlated with those obtained by FNA. RESULTS: Adequate material was obtained in all ten cases. IHC stains helped to confirm the cytological impression of SPTP. Histological examination of resection specimens, available in 9/10 cases, confirmed the cytological diagnosis. CONCLUSIONS: FNA particularly that obtained with EUS guidance is an effective tool in the accurate diagnosis of SPTP.
Objectives: We evaluated the use of treponemal serum tests in cerebrospinal fluid (CSF) to diagnose neurosyphilis since CSF-Venereal Disease Research Laboratory (VDRL) is specific but lacks sensitivity. Methods: We tested CSF specimens using the following treponemal serum tests: INNO-LIA, Treponema pallidum particle agglutination (TP-PA), Trep-Sure, and Maxi-Syph. The reference standard to calculate sensitivity and specificity was having two or more reactive/positive tests on CSF. Results: The reference standard group included 11 cases that fulfilled the definition of neurosyphilis (reactive CSF-VDRL plus symptoms) and three cases that did not fulfill the definition: two cases had neurologic symptoms but a nonreactive CSF-VDRL, and one had several positive CSF syphilis tests (reactive VDRL and positive treponemal and syphilis polymerase chain reaction) but no history (referred sample). Controls included 18 patients in whom a CSF-VDRL was performed the same week as patients in the reference group. The sensitivity was 85.7% (12/14) for CSF-VDRL, 92.9% (13/14) for Trep-Sure, 100% (10/10) for Maxi-Syph, 92.3% (12/13) for INNO-LIA, and 83.3% (10/12) for TP-PA. Specificity was 100% for all tests. Conclusions: Treponemal serum tests performed on CSF were useful in identifying two patients with nonreactive CSF-VDRL.
Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.
Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia.
The colonic mucosal tissue provides a vital barrier to luminal antigens. This barrier is composed of a monolayer of simple columnar epithelial cells. The colonic epithelium is dynamically turned over and epithelial cells are generated in the stem cell containing crypts of Lieberkühn. Progenitor cells produced in the crypt-bases migrate toward the luminal surface, undergoing a process of cellular differentiation before being shed into the gut lumen. In order to study these processes at the molecular level, we have developed a simple method for the microdissection of two spatially distinct regions of the colonic mucosa; the proliferative crypt zone, and the differentiated surface epithelial cells. Our objective is to isolate specific crypt and surface epithelial cell populations from mouse colonic mucosa for the isolation of RNA and protein.
by
Elizabeth J. Johnson;
Rohini Vishwanathan;
Mary Ann Johnson;
Dorothy B. Hausman;
Adam Davey;
Tammy M. Scott;
Robert C. Green;
L. Stephen Miller;
Marla Gearing;
John Woodard;
Peter T. Nelson;
Hae-Yun Chung;
Wolfgang Schalch;
Jonas Wittwer;
Leonard W. Poon
Oxidative stress is involved in age-related cognitive decline. The dietary antioxidants, carotenoids, tocopherols, and vitamin A may play a role in the prevention or delay in cognitive decline. In this study, sera were obtained from 78 octogenarians and 220 centenarians from the Georgia Centenarian Study. Brain tissues were obtained from 47 centenarian decedents. Samples were analyzed for carotenoids, α -tocopherol, and retinol using HPLC. Analyte concentrations were compared with cognitive tests designed to evaluate global cognition, dementia, depression and cognitive domains (memory, processing speed, attention, and executive functioning). Serum lutein, zeaxanthin, and β -carotene concentrations were most consistently related to better cognition (P < 0.05) in the whole population and in the centenarians. Only serum lutein was significantly related to better cognition in the octogenarians. In brain, lutein and β -carotene were related to cognition with lutein being consistently associated with a range of measures. There were fewer significant relationships for α -tocopherol and a negative relationship between brain retinol concentrations and delayed recognition. These findings suggest that the status of certain carotenoids in the old may reflect their cognitive function. The protective effect may not be related to an antioxidant effect given that α -tocopherol was less related to cognition than these carotenoids.
by
Nissi Varki;
Dan Anderson;
James G Herndon;
Tho Pham;
Christopher J Gregg;
Monica Cheriyan;
James Murphy;
Elizabeth Strobert;
Jo Fritz;
Jim Else;
Ajit Varki
Heart disease is common in both humans and chimpanzees, manifesting typically as sudden cardiac arrest or progressive heart failure. Surprisingly, although chimpanzees are our closest evolutionary relatives, the major cause of heart disease is different in the two species. Histopathology data of affected chimpanzee hearts from two primate centers, and analysis of literature indicate that sudden death in chimpanzees (and in gorillas and orangutans) is commonly associated with diffuse interstitial myocardial fibrosis of unknown cause. In contrast, most human heart disease results from coronary artery atherosclerosis, which occludes myocardial blood supply, causing ischemic damage. The typical myocardial infarction of humans due to coronary artery thrombosis is rare in these apes, despite their human-like coronary-risk-prone blood lipid profiles. Instead, chimpanzee 'heart attacks' are likely due to arrythmias triggered by myocardial fibrosis. Why do humans not often suffer from the fibrotic heart disease so common in our closest evolutionary cousins? Conversely, why do chimpanzees not have the kind of heart disease so common in humans? The answers could be of value to medical care, as well as to understanding human evolution. A preliminary attempt is made to explore possibilities at the histological level, with a focus on glycosylation changes.
by
Barry I. Freedman;
Stephen Pastan;
Ajay K. Israni;
David Schladt;
Bruce A. Julian;
Michael D. Gautreaux;
Vera Hauptfeld;
Robert Bray;
Howard Gebel;
Allan D Kirk;
Robert S. Gaston;
Jeffrey Rogers;
Alan C. Farney;
Giuseppe Orlando;
Robert J. Stratta;
Sumit Mohan;
Lijun Ma;
Carl D. Langefeld;
Donald W. Bowden;
Pamela J. Hicks;
Nicholette D. Palmer;
Amudha Palanisamy;
Amber M. Reeves-Daniel;
W. Mark Brown;
Jasmin Divers
Background. Two apolipoprotein L1 gene (APOL1) renal-risk variants in donors and African American (AA) recipient race are associated with worse allograft survival in deceased-donor kidney transplantation (DDKT) from AA donors. To detect other factors impacting allograft survival from deceased AA kidney donors, APOL1 renal-risk variants were genotyped in additional AA kidney donors. Methods. The APOL1 genotypes were linked to outcomes in 478 newly analyzed DDKTs in the Scientific Registry of Transplant Recipients. Multivariate analyses accounting for recipient age, sex, race, panel-reactive antibody level, HLAmatch, cold ischemia time, donor age, and expanded criteria donation were performed. These 478 transplantations and 675 DDKTs from a prior report were jointly analyzed. Results. Fully adjusted analyses limited to the new 478 DDKTs replicated shorter renal allograft survival in recipients of APOL1 2-renal-risk-variant kidneys (hazard ratio [HR], 2.00; P = 0.03). Combined analysis of 1153 DDKTs from AA donors revealed donor APOL1 high-risk genotype (HR, 2.05; P = 3 - 10-4), older donor age (HR, 1.18; P = 0.05), and younger recipient age (HR, 0.70; P = 0.001) adversely impacted allograft survival. Although prolonged allograft survival was seen in many recipients of APOL1 2-renal-risk-variant kidneys, follow-up serum creatinine concentrations were higher than that in recipients of 0/1 APOL1 renal-risk-variant kidneys. A competing risk analysis revealed that APOL1 impacted renal allograft survival, but not recipient survival. Interactions between donor age and APOL1 genotype on renal allograft survival were nonsignificant. Conclusions. Shorter renal allograft survival is reproducibly observed after DDKT from APOL1 2-renal-risk-variant donors. Younger recipient age and older donor age have independent adverse effects on renal allograft survival.