by
Roy Sutliff;
Erik R. Walp Walp;
Young Hee Kim;
Lori A. Walker;
Alexander M. El-Ali;
Jing Ma;
Robert Bonsall;
Semra Ramosevac;
Douglas Eaton;
Jill W. Verlander;
Laura Hansen;
Rudolph L. Jr. Gleason;
Truyen D. Pham;
Seongun Hong;
Vladimir Pech;
Susan Wall
Pendrin is a Cl-/HCO3- exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation.
BACKGROUND: Urea transporters (UTs) are important in urine concentration and in urea recycling, and UT-B has been implicated in both. In kidney, UT-B was originally localized to outer medullary descending vasa recta, and more recently detected in inner medullary descending vasa recta. Endogenously produced microRNAs (miRs) bind to the 3'UTR of genes and generally inhibit their translation, thus playing a pivotal role gene regulation. METHODS: Mice were dehydrated for 24 hours then sacrificed. Inner and outer medullas were analyzed by polymerase chain reaction (PCR) and quantitative PCR for miRNA expression and analyzed by western blotting for protein abundance. RESULTS: MiRNA sequencing analysis of mouse inner medullas showed a 40% increase in miRNA-200c in dehydrated mice compared with controls. An in silico analysis of the targets for miR-200c revealed that miRNA-200c could directly target the gene for UT-B. PCR confirmed that miR-200c is up-regulated in the inner medullas of dehydrated mice while western blot showed that UT-B protein abundance was down-regulated in the same portion of the kidney. However, in the outer medulla, miR-200c was reduced and UT-B protein was increased in dehydrated mice. CONCLUSIONS: This is the first indication that UT-B protein and miR-200c may each be differentially regulated by dehydration within the kidney outer and inner medulla. The inverse correlation between the direction of change in miR-200c and UT-B protein abundance in both the inner and outer medulla suggests that miR-200c may be associated with the change in UT-B protein in these 2 portions of the kidney medulla.
by
Barry I. Freedman;
Stephen Pastan;
Ajay K. Israni;
David Schladt;
Bruce A. Julian;
Michael D. Gautreaux;
Vera Hauptfeld;
Robert Bray;
Howard Gebel;
Allan D Kirk;
Robert S. Gaston;
Jeffrey Rogers;
Alan C. Farney;
Giuseppe Orlando;
Robert J. Stratta;
Sumit Mohan;
Lijun Ma;
Carl D. Langefeld;
Donald W. Bowden;
Pamela J. Hicks;
Nicholette D. Palmer;
Amudha Palanisamy;
Amber M. Reeves-Daniel;
W. Mark Brown;
Jasmin Divers
Background. Two apolipoprotein L1 gene (APOL1) renal-risk variants in donors and African American (AA) recipient race are associated with worse allograft survival in deceased-donor kidney transplantation (DDKT) from AA donors. To detect other factors impacting allograft survival from deceased AA kidney donors, APOL1 renal-risk variants were genotyped in additional AA kidney donors. Methods. The APOL1 genotypes were linked to outcomes in 478 newly analyzed DDKTs in the Scientific Registry of Transplant Recipients. Multivariate analyses accounting for recipient age, sex, race, panel-reactive antibody level, HLAmatch, cold ischemia time, donor age, and expanded criteria donation were performed. These 478 transplantations and 675 DDKTs from a prior report were jointly analyzed. Results. Fully adjusted analyses limited to the new 478 DDKTs replicated shorter renal allograft survival in recipients of APOL1 2-renal-risk-variant kidneys (hazard ratio [HR], 2.00; P = 0.03). Combined analysis of 1153 DDKTs from AA donors revealed donor APOL1 high-risk genotype (HR, 2.05; P = 3 - 10-4), older donor age (HR, 1.18; P = 0.05), and younger recipient age (HR, 0.70; P = 0.001) adversely impacted allograft survival. Although prolonged allograft survival was seen in many recipients of APOL1 2-renal-risk-variant kidneys, follow-up serum creatinine concentrations were higher than that in recipients of 0/1 APOL1 renal-risk-variant kidneys. A competing risk analysis revealed that APOL1 impacted renal allograft survival, but not recipient survival. Interactions between donor age and APOL1 genotype on renal allograft survival were nonsignificant. Conclusions. Shorter renal allograft survival is reproducibly observed after DDKT from APOL1 2-renal-risk-variant donors. Younger recipient age and older donor age have independent adverse effects on renal allograft survival.
miR-155 was synthesized and loaded into exosomes in increased infiltration of macrophages in a uremic heart. The released exosomal fusion with the plasma membrane leads to the release of miR-155 into the cytosol and translational repression of forkhead transcription factors of the O class (FoxO3a) in cardiomyocytes. Finally, macrophage-derived miR-155–containing exosomes promoted cardiomyocyte pyroptosis and uremic cardiomyopathy changes (cardiac hypertrophy and fibrosis) by directly targeting FoxO3a in uremic mice.
by
Harpreet Bhutani;
Vikram Smith;
Frederic Rahbari Oskoui;
Ankush Mittal;
Jared J. Grantham;
Vicente E. Torres;
Michal Mrug;
Kyongtae T. Bae;
Zhiyuan Wu;
Yinghui Ge;
Doug Landslittel;
Patrice Gibbs;
William O'Neill;
Arlene Chapman
Autosomal dominant polycystic kidney disease (ADPKD) is marked by gradual renal cyst and kidney enlargement and ultimately renal failure. Magnetic resonance–based, height-adjusted total kidney volume (htTKV) over 600 cc/m predicts the development of CKD stage 3 within 8 years in the Consortium for Radiologic Imaging in Polycystic Kidney Disease cohort. Here we compared simultaneous ultrasound and magnetic resonance imaging to determine whether ultrasound and kidney length (KL) predict future CKD stage 3 over longer periods of follow-up. A total of 241 ADPKD patients, 15–46 years, with creatinine clearance of 70 ml/min and above had iothalamate clearance, magnetic resonance, and ultrasound evaluations. Participants underwent an average of five repeat clearance measurements over a mean follow-up of 9.3 years. Ultrasound and magnetic resonance-based TKV and KL were compared using Bland–Altman plots and intraclass correlations. Each measure was tested to predict future CKD stage 3. Relatively strong intraclass correlations between ultrasound and magnetic resonance were found for both htTKV and KL (0.81 and 0.85, respectively). Ultrasound and magnetic resonance-based htTKV and KL predicted future CKD stage 3 similarly (AUC of 0.87, 0.88, 0.87, and 0.88, respectively). An ultrasound kidney length over 16.5 cm and htTKV over 650 ml/min had the best cut point for predicting the development of CKD stage 3. Thus, kidney length alone is sufficient to stratify the risk of progression to renal insufficiency early in ADPKD using either ultrasound or magnetic resonance imaging.Kidney International advance online publication, 1 April 2015; doi:10.1038/ki.2015.71.
by
P. Richard Grimm;
Yoskaly Lazo-Fernandez;
Eric Delpire;
Susan Wall;
Susan G. Dorsey;
Edward J. Weinman;
Richard Coleman;
James B. Wade;
Paul A. Welling
Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.
Background: The usage of nursing home (NH) services is a marker of frailty among older adults. Although the Centers for Medicare & Medicaid Services (CMS) revised the Medical Evidence Report Form CMS-2728 in 2005 to include data collection on NH institutionalization, the validity of this item has not been reported.
Methods: There were 27,913 patients ≥ 75 years of age with incident end-stage renal disease (ESRD) in 2006, which constituted our analysis cohort. We determined the accuracy of the CMS-2728 using a matched cohort that included the CMS Minimum Data Set (MDS) 2.0, often employed as a "gold standard" metric for identifying patients receiving NH care. We calculated sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the CMS-2728 NH item. Next, we compared characteristics and mortality risk by CMS-2728 and MDS NH status agreement.
Results: The sensitivity, specificity, PPV and NPV of the CMS-2728 for NH status were 33%, 97%, 80% and 79%, respectively. Compared to those without the MDS or CMS-2728 NH indicator (No MDS/No 2728), multivariable adjusted hazard ratios (95% confidence interval) for mortality associated with NH status were 1.55 (1.46-1.64) for MDS/2728, 1.48 (1.42-1.54) for MDS/No 2728, and 1.38 (1.25-1.52) for No MDS/2728. NH utilization was more strongly associated with mortality than other CMS-2728 items in the model.
Conclusions: The CMS-2728 underestimated NH utilization among older adults with incident ESRD. The potential for misclassification may have important ramifications for assessing prognosis, developing advanced care plans and providing coordinated care.
by
Niek F. Casteleijn;
Jaime D. Blais;
Arlene Chapman;
Frank S. Czerwiec;
Olivier Devuyst;
Eiji Higashihara;
Anna M. Leliveld;
John Ouyang;
Ronald D. Perrone;
Vicente E. Torres;
Ron T. Gansevoort
Background: Kidney pain is a common complication in patients with autosomal dominant polycystic kidney disease (ADPKD), and data from the TEMPO 3:4 trial suggested that tolvaptan, a vasopressin V2 receptor antagonist, may have a positive effect on kidney pain in this patient group. Because pain is difficult to measure, the incidence of kidney pain leading to objective medical interventions was used in the present study to assess pain. Study Design Secondary analysis from a randomized controlled trial. Setting & Participants Patients with ADPKD with preserved kidney function. Intervention Tolvaptan or placebo. Outcomes Kidney pain events defined by objective medical interventions. Measurements Kidney pain events were recorded and independently adjudicated. Incidence of a first kidney pain event was assessed overall and categorized into 5 subgroups according to severity. Results Of 1,445 participating patients (48.4% women; mean age, 39 ± 7 [SD] years; mean estimated glomerular filtration rate, 81 ± 22 mL/min/1.73 m2; median total kidney volume, 1,692 [IQR, 750-7,555] mL), 50.9% reported a history of kidney pain at baseline. History of urinary tract infections, kidney stones, or hematuria (all P < 0.001) and female sex (P < 0.001) were significantly associated with history of kidney pain. Tolvaptan use resulted in a significantly lower incidence of kidney pain events when compared to placebo: 10.1% versus 16.8% (P < 0.001), with a risk reduction of 36% (HR, 0.64; 95% CI, 0.48-0.86). The reduction in pain event incidence by tolvaptan was found in all groups irrespective of pain severity and was independent of predisposing factors (P for interaction > 0.05). The effect of tolvaptan was explained at least in part by a decrease in incidence of urinary tract infections, kidney stones, and hematuria when compared to placebo. Limitations Trial has specific inclusion criteria for total kidney volume and kidney function. Conclusions Tolvaptan decreased the incidence of kidney pain events independent of patient characteristics predisposing for kidney pain and possibly in part due to reductions in ADPKD-related complications.
Kidney fibrosis occurs in almost every type of chronic kidney disease. We found that microRNA (miR)-26a was decreased in the kidney, muscle, and exosomes of unilateral ureteral obstruction (UUO) mice. We hypothesized that exogenous miR-26 could suppresses renal fibrosis and muscle wasting in obstructive kidney disease. For this purpose, we generated exosomes that encapsulated miR-26, then injected these into skeletal muscle of UUO mice. The expression of miR-26a was elevated in serum exosomes from UUO mice following exosome-miR-26a injection. In these mice, muscle wasting has been ameliorated as evidenced by increased muscle weights. In addition, a muscle atrophy marker, myostatin, is increased in UUO muscle; provision of miR-26a abolished this increase. We detected a remote effect of exosomes containing miR-26a in UUO-induced renal fibrosis. The intervention of miR-26a attenuated UUO-induced renal fibrosis as determined by immunohistological assessment of α-smooth muscle actin and Masson's trichrome staining. Furthermore, exogenous miR-26a decreased the protein levels of 2 profibrosis proteins, connective tissue growth factor (CTGF) and TGF-β1, in UUO kidney. Our data showed that exosomes containing miR-26a prevented muscle atrophy by inhibiting the transcription factor forkhead box O1. Likewise, the exosome-carried miR-26a limited renal fibrosis by directly suppressing CTGF. Our findings provide an experimental basis for exosome-mediated therapy of muscle atrophy and renal fibrosis.-Zhang, A., Wang, H., Wang, B., Yuan, Y., Klein, J. D., Wang, X. H. Exogenous miR-26a suppresses muscle wasting and renal fibrosis in obstructive kidney disease.
Background: Improving access to optimal healthcare may depend on the attributes of neighborhoods where patients receive healthcare services. We investigated whether the characteristics of dialysis facility neighborhoods - where most patients with end-stage renal disease are treated - were associated with facility-level kidney transplantation. Methods: We examined the association between census tract (neighborhood)-level sociodemographic factors and facility-level kidney transplantation rate in 3,983 U.S. dialysis facilities where kidney transplantation rates were high. Number of kidney transplants and total person-years contributed at the facility level in 2007-2010 were obtained from the Dialysis Facility Report and linked to the census tract data on sociodemographic characteristics from the American Community Survey 2006-2010 by dialysis facility location. We used multivariable Poisson models with generalized estimating equations to estimate the link between the neighborhood characteristics and transplant incidence. Results: Dialysis facilities in the United States were located in neighborhoods with substantially greater proportions of black and poor residents, relative to the national average. Most facility neighborhood characteristics were associated with transplant, with incidence rate ratios (95% CI) for standardized increments (in percentage) of neighborhood exposures of: living in poverty, 0.88 (0.84-0.92), black race, 0.83 (0.78-0.89); high school graduates, 1.22 (1.17-1.26); and unemployed, 0.90 (0.85-0.95). Conclusion: Dialysis facility neighborhood characteristics may be modestly associated with facility rates of kidney transplantation. The success of dialysis facility interventions to improve access to kidney transplantation may partially depend on reducing neighborhood-level barriers.