Aim: Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Methods: Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. Results: PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Conclusion: Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
New Findings: What is the central question of this study? Pregnancy requires a robust plasma volume expansion driven by renal sodium retention. In the late-pregnant kidney, the aldosterone-responsive epithelial Na+ channel is increased, whereas the sodium-chloride cotransporter is decreased. Pendrin has been shown to support sodium reabsorption in the distal nephron and compensate for loss of the sodium-chloride cotransporter. We investigated the expression and abundance of pendrin in the pregnant kidney. What is the main finding and its importance? Pendrin protein, apical localization and thiazide sensitivity are increased in pregnancy. This implicates a possible role for pendrin in supporting the renal sodium chloride reabsorption and plasma volume expansion of pregnancy. Pregnancy is characterized by cumulative plasma volume expansion as a result of renal sodium retention, driven by activation of aldosterone. We previously reported that the abundance and activity of the aldosterone-responsive epithelial Na+ channel is increased, whereas the sodium-chloride cotransporter (NCC) is decreased in the kidney of the late-pregnant rat. The chloride-bicarbonate exchanger pendrin is also aldosterone responsive and has been shown to support activity of the aldosterone-responsive epithelial Na+ channel and compensate for the loss of NCC. Additionally, pendrin coupled to the sodium-dependent chloride-bicarbonate exchanger (NDCBE) mediates thiazide-sensitive sodium reabsorption in the cortical collecting duct. In this study, we investigated pendrin and NDCBE transcript expression, pendrin protein abundance, pendrin cellular localization and thiazide sensitivity in virgin, mid-pregnant and late-pregnant rats to test the hypothesis that increased pendrin activity might occur in pregnancy. By RT-PCR, NDCBE and pendrin mRNA expression was unchanged from virgins, whereas pendrin protein abundance determined by Western blotting was increased in both mid- and late-pregnant rats. The apical localization of pendrin was also increased in late-pregnant rats compared with virgins by immunohistochemistry. Pregnant rats displayed an increased natriuretic response to hydrochlorothiazide compared with virgins. Given that NCC expression is decreased in late pregnancy, an increased thiazide sensitivity may be due to inhibition of upregulated pendrin-NDCBE-coupled sodium reabsorption. Thus, increased pendrin in pregnant rats may compensate for the decreased NCC and aid in the renal sodium chloride reabsorption of pregnancy.
ATP is an important paracrine regulator of renal tubular water and urea transport. The activity of P2Y2, the predominant P2Y receptor of the medullary collecting duct, is mediated by ATP, and modulates urinary concentration. To investigate the role of purinergic signaling in the absence of urea transport in the collecting duct, we studied wild-type (WT) and UT-A1/A3 null (UT-A1/A3 KO) mice in metabolic cages to monitor urine output, and collected tissue samples for analysis. We confirmed that UT-A1/A3 KO mice are polyuric, and concurrently observed lower levels of urinary cAMP as compared to WT, despite elevated serum vasopressin (AVP) levels. Because P2Y2 inhibits AVP-stimulated transport by dampening cAMP synthesis, we suspected that, similar to other models of AVP-resistant polyuria, purinergic signaling is increased in UT-A1/A3 KO mice. In fact, we observed that both urinary ATP and purinergic-mediated prostanoid (PGE2) levels were elevated. Collectively, our data suggest that the reduction of medullary osmolality due to the lack of UT-A1 and UT-A3 induces an AVP-resistant polyuria that is possibly exacerbated by, or at least correlated with, enhanced purinergic signaling.
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1’s strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 –binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
We previously showed that the phosphatases PP1/PP2A and PP2B dephosphorylate the water channel, AQP2, suggesting their role in water reabsorption. In this study, we investigated whether protein phosphatase 2A (PP2A) and protein phosphatase 2B (PP2B or calcineurin), which are present in the inner medullary collecting duct (IMCD), are regulators of urea and water permeability. Inhibition of calcineurin by tacrolimus increased both basal and vasopressin-stimulated osmotic water permeability in perfused rat IMCDs. However, tacrolimus did not affect osmotic water permeability in the presence of aldosterone. Inhibition of PP2A by calyculin increased both basal and vasopressin-stimulated osmotic water permeability, and aldosterone reversed the increase by calyculin. Previous studies showed that adrenomedullin (ADM) activates PP2A and decreases osmotic water permeability. Inhibition of PP2A by calyculin prevented the ADM-induced decrease in water reabsorption. ADM reduced the phosphorylation of AQP2 at serine 269 (pSer269 AQP2). Urea is linked to water reabsorption by building up hyperosmolality in the inner medullary interstitium. Calyculin increased urea permeability and phosphorylated UT-A1. Our results indicate that phosphatases regulate water reabsorption. Aldosterone and adrenomedullin decrease urea or osmotic water permeability by acting through calcineurin and PP2A, respectively. PP2A may regulate water reabsorption by dephosphorylating pSer269, AQP2, and UT-A1.
The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca2+]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca2+]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca2+]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca2+]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca2+]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca2+]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca2+]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca2+]i, creating [Ca2+]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca2+]i uptake destroyed the polarized response of ENaC to [Ca2+]i. Overall, our data suggest that ENaC is regulated by [Ca2+]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca2+]i sequestration.