The thiazide-sensitive sodium chloride cotransporter (NCC) and the epithelial sodium channel (ENaC) are two of the most important determinants of salt balance and thus systemic blood pressure. Abnormalities in either result in profound changes in blood pressure. There is one segment of the nephron where these two sodium transporters are coexpressed, the second part of the distal convoluted tubule. This is a key part of the aldosterone-sensitive distal nephron, the final regulator of salt handling in the kidney. Aldosterone is the key hormonal regulator for both of these proteins. Despite these shared regulators and coexpression in a key nephron segment, associations between these proteins have not been investigated. After confirming apical localization of these proteins, we demonstrated the presence of functional transport proteins and native association by blue native PAGE. Extensive coimmunoprecipitation experiments demonstrated a consistent interaction of NCC with α-And γ-ENaC. Mammalian two-hybrid studies demonstrated direct binding of NCC to ENaC subunits. Fluorescence resonance energy transfer and immunogold EM studies confirmed that these transport proteins are within appropriate proximity for direct binding. Additionally, we demonstrate that there are functional consequences of this interaction, with inhibition of NCC affecting the function of ENaC. This novel finding of an association between ENaC and NCC could alter our understanding of salt transport in the distal tubule.
by
Allison E. Norlander;
Mohammed A. Saleh;
Nikhil V. Kamat;
Benjamin Ko;
Juan Gnecco;
Linjue Zhu;
Bethany L. Dale;
Yoichiro Iwakura;
Robert Hoover Jr;
Alicia A. McDonough;
Meena S. Madhur
Angiotensin II-induced hypertension is associated with an increase in T-cell production of interleukin-17A (IL-17A). Recently, we reported that IL-17A-/- mice exhibit blunted hypertension, preserved natriuresis in response to a saline challenge, and decreased renal sodium hydrogen exchanger 3 expression after 2 weeks of angiotensin II infusion compared with wild-type mice. In the current study, we performed renal transporter profiling in mice deficient in IL-17A or the related isoform, IL-17F, after 4 weeks of Ang II infusion, the time when the blood pressure reduction in IL-17A-/- mice is most prominent. Deficiency of IL-17A abolished the activation of distal tubule transporters, specifically the sodium-chloride cotransporter and the epithelial sodium channel and protected mice from glomerular and tubular injury.
In human proximal tubule (HK-2) cells, IL-17A increased sodium hydrogen exchanger 3 expression through a serum and glucocorticoid-regulated kinase 1-dependent pathway. In mouse distal convoluted tubule cells, IL-17A increased sodium-chloride cotransporter activity in a serum and glucocorticoid-regulated kinase 1/Nedd4-2-dependent pathway. In both cell types, acute treatment with IL-17A induced phosphorylation of serum and glucocorticoid-regulated kinase 1 at serine 78, and treatment with a serum and glucocorticoid-regulated kinase 1 inhibitor blocked the effects of IL-17A on sodium hydrogen exchanger 3 and sodium-chloride cotransporter. Interestingly, both HK-2 and mouse distal convoluted tubule 15 cells produce endogenous IL-17A. IL17F had little or no effect on blood pressure or renal sodium transporter abundance. These studies provide a mechanistic link by which IL-17A modulates renal sodium transport and suggest that IL-17A inhibition may improve renal function in hypertension and other autoimmune disorders.
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
by
Jian Yang;
Laureano D. Asico;
Amber L. Beitelshees;
Jun B. Feranil;
Xiaoyan Wang;
John E. Jones;
Ines Armando;
Santiago G. Cuevas;
Gary L. Schwartz;
John G. Gums;
Arlene Chapman;
Stephen T. Turner;
Eric Boerwinkle;
Rhonda M. Cooper-DeHoff;
Julie A. Johnson;
Robin A. Felder;
Edward J. Weinman;
Chunyu Zeng;
PA Jose;
Van Anthony Villar
Acute renal depletion of sorting nexin 1 (SNX1) in mice results in blunted natriuretic response and hypertension due to impaired dopamine D5 receptor (D5R) activity. We elucidated the molecular mechanisms for these phenotypes in Snx1−/− mice. These mice had increased renal expressions of angiotensin II type 1 receptor (AT1R), NADPH oxidase (NOX) subunits, D5R, and NaCl cotransporter. Basal reactive oxygen species (ROS), NOX activity, and blood pressure (BP) were also higher in Snx1-/- mice, which were normalized by apocynin, a drug that prevents NOX assembly.
Renal proximal tubule (RPT) cells from hypertensive (HT) Euro-American males had deficient SNX1 activity, impaired D5R endocytosis, and increased ROS compared with cells from normotensive (NT) Euro-American males. siRNA-mediated depletion of SNX1 in RPT cells from NT subjects led to a blunting of D5R agonist-induced increase in cAMP production and decrease in Na+ transport, effects that were normalized by over-expression of SNX1. Among HT African-Americans, three of the 12 single nucleotide polymorphisms interrogated for the SNX1 gene were associated with a decrease in systolic BP in response to hydrochlorothiazide (HCTZ). The results illustrate a new paradigm for the development of hypertension and imply that the trafficking protein SNX1 may be a crucial determinant for hypertension and response to antihypertensive therapy.