Chaperone-mediated autophagy (CMA) is a lysosomal proteolytic pathway in which cytosolic substrate proteins contain specific chaperone recognition sequences required for degradation and are translocated directly across the lysosomal membrane for destruction. CMA proteolytic activity has a reciprocal relationship with macroautophagy: CMA is most active in cells in which macroautophagy is least active. Normal renal proximal tubular cells have low levels of macroautophagy, but high basal levels of CMA activity. CMA activity is regulated by starvation, growth factors, oxidative stress, lipids, aging, and retinoic acid signaling. The physiological consequences of changes in CMA activity depend on the substrate proteins present in a given cell type. In the proximal tubule, increased CMA results from protein or calorie starvation and from oxidative stress. Overactivity of CMA can be associated with tubular lysosomal pathology and certain cancers. Reduced CMA activity contributes to protein accumulation in renal tubular hypertrophy, but may contribute to oxidative tissue damage in diabetes and aging. Although there are more questions than answers about the role of high basal CMA activity, this remarkable feature of tubular protein metabolism appears to influence a variety of chronic diseases.
Clinical evidence suggests that statins reduce cancer incidence and mortality. However, there is lack of in vitro data to show the mechanism by which statins can reduce the malignancies of cancer cells. We used a human B lymphoma Daudi cells as a model and found that lovastatin inhibited, whereas exogenous cholesterol (Cho) stimulated, proliferation cell cycle progression in control Daudi cells, but not in the cells when transient receptor potential canonical 6 (TRPC6) channel was knocked down. Lovastatin decreased, whereas Cho increased, the levels of intracellular reactive oxygen species (ROS) respectively by decreasing or increasing the expression of p47-phox and gp91-phox (NOX2). Reducing intracellular ROS with either a mimetic superoxide dismutase (TEMPOL) or an NADPH oxidase inhibitor (apocynin) inhibited cell proliferation, particularly in Cho-treated cells. The effects of TEMPOL or apocynin were mimicked by inhibition of TRPC6 with SKF-96365. Lovastatin decreased TRPC6 expression and activity via a Cho-dependent mechanism, whereas Cho increased TRPC6 expression and activity via an ROS-dependent mechanism. Consistent with the fact that TRPC6 is a Ca 2+ -permeable channel, lovastatin decreased, but Cho increased, intracellular Ca 2+ also via ROS. These data suggest that lovastatin inhibits malignant B cell proliferation by reducing membrane Cho, intracellular ROS, TRPC6 expression and activity, and intracellular Ca 2+ .
by
Vanessa Fontana;
Caitrin W. McDonough;
Yan Gong;
Nihal M. El Rouby;
Ana Caroline C. Sa;
Kent D. Taylor;
Y. -D. Ida Chen;
John G. Gums;
Arlene Chapman;
Stephen T. Turner;
Carl J. Pepine;
Julie A. Johnson;
Rhonda M. Cooper-DeHoff
Background: Resistant hypertension (RHTN), defined by lack of blood pressure (BP) control despite treatment with at least 3 antihypertensive drugs, increases cardiovascular risk compared with controlled hypertension. Yet, there are few data on genetic variants associated with RHTN. Methods and Results: We used a gene-centric array containing ≈50 000 single-nucleotide polymorphisms (SNPs) to identify polymorphisms associated with RHTN in hypertensive participants with coronary artery disease (CAD) from INVEST-GENES (the INnternational VErapamil-SR Trandolapril STudy-GENEtic Substudy). RHTN was defined as BP≥140/90 on 3 drugs, or any BP on 4 or more drugs. Logistic regression analysis was performed in European Americans (n=904) and Hispanics (n=837), using an additive model adjusted for age, gender, randomized treatment assignment, body mass index, principal components for ancestry, and other significant predictors of RHTN. Replication of the top SNP was conducted in 241 European American women from WISE (Women's Ischemia Syndrome Evaluation), where RHTN was defined similarly. To investigate the functional effect of rs12817819, mRNA expression was measured in whole blood. We found ATP2B1 rs12817819 associated with RHTN in both INVEST European Americans (P-value=2.44 × 10<sup>-3</sup>, odds ratio=1.57 [1.17 to 2.01]) and INVEST Hispanics (P=7.69 × 10<sup>-4</sup>, odds ratio=1.76 [1.27 to 2.44]). A consistent trend was observed at rs12817819 in WISE, and the INVEST-WISE meta-analysis result reached chip-wide significance (P=1.60 × 10<sup>-6</sup>, odds ratio=1.65 [1.36 to 1.95]). Expression analyses revealed significant differences in ATP2B1 expression by rs12817819 genotype. Conclusions: The ATP2B1 rs12817819 A allele is associated with increased risk for RHTN in hypertensive participants with documented CAD or suspected ischemic heart disease. Clinical Trial Registration: URL: www.clinicaltrials.gov; Unique identifiers: NCT00133692 (INVEST), NCT00000554 (WISE).
Background:Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA) variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1) antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+), and a related progeny clone, Pk1(B+)1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.Principal Findings:We have investigated SICAvar RNA and protein expression in Pk1(A+), Pk1(B+)1+, and SICA[-] parasites. The Pk1(A+) and Pk1(B+)1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.Significance:SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+) to Pk1(B+)1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying antigenic variation in the context of the host environment.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: Lupus nephritis (LN) is a serious organ manifestation of systemic lupus erythematosus. Histologic overlap is relatively common in the six pathologic classes (I to VI) of LN. For example, mixed proliferative LN (MPLN) often includes features of classes III & V or classes IV & V combined. We performed a comparative evaluation of renal outcomes in patients with MPLN to patients with pure proliferative LN (PPLN) against pre-specified renal outcomes, and we also identified predictor of clinical outcomes among those with PPLN and MPLN. Hypothesis: Individuals with MPLN will have worse short-term renal outcomes compared to those with PPLN. Methods: We retrospectively reviewed 278 adult LN patients (≥18 years old) identified from an Emory University Hospital registry of native renal biopsies performed between January 2000 and December 2011. The final analytic sample consisted of individuals with a diagnosis of PPLN (n = 60) and MPLN (n = 96). We analyzed differences in clinical and laboratory characteristics at baseline. We also assessed associations between LN category and renal outcomes (complete remission and time to ESRD) with logistic and Cox proportional hazards models within two years of baseline. Results: The study population was predominantly female (83.97%) and African American (71.8%) with a mean age of 33.4 years at baseline. Over a median follow up of 1.02 years, we did not find any statistically significant associations between MPLN and the development of ESRD or remission when compared to patients with PPLN (adjusted HR = 0.30, 95% CI = 0.07, 1.26). Conclusion: There was no association between mixed or pure histopathologic features of LN at presentation and rate of complete or partial remission but higher baseline eGFR was associated with a lower probability of complete remission among patients with lupus nephritis.
by
Campbell R. Sheen;
Pia Kuss;
Sonoko Narisawa;
Manisha C. Yadav;
Jessica Nigro;
Wei Wang;
T. Nicole Chhea;
Eduard A. Sergienko;
Kapil Kapoor;
Michael R. Jackson;
Marc F. Hoylaerts;
Anthony B. Pinkerton;
W Charles O'Neill;
Jose Luis Millan
Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner. Hemizygous overexpressor male mice (Tagln-Cre<sup>+/-</sup>; Hprt<sup>ALPL</sup><sup>/Y</sup> or TNAP-OE) show extensive vascular calcification, high blood pressure, and cardiac hypertrophy, and have a median age of death of 44 days, whereas the cardiovascular phenotype is much less pronounced and life expectancy is longer in heterozygous (Tagln-Cre<sup>+/-</sup>; Hprt<sup>ALPL</sup><sup>/-</sup>) female TNAP-OE mice. Gene expression analysis showed upregulation of osteoblast and chondrocyte markers and decreased expression of vascular smooth muscle markers in the aortas of TNAP-OE mice. Through medicinal chemistry efforts, we developed inhibitors of TNAP with drug-like pharmacokinetic characteristics. TNAP-OE mice were treated with the prototypical TNAP inhibitor SBI-425 or vehicle to evaluate the feasibility of TNAP inhibition in vivo. Treatment with this inhibitor significantly reduced aortic calcification and cardiac hypertrophy, and extended lifespan over vehicle-treated controls, in the absence of secondary effects on the skeleton. This study shows that TNAP in the vasculature contributes to the pathology of MVC and that it is a druggable target.
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.
The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca2+]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca2+]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca2+]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca2+]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca2+]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca2+]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca2+]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca2+]i, creating [Ca2+]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca2+]i uptake destroyed the polarized response of ENaC to [Ca2+]i. Overall, our data suggest that ENaC is regulated by [Ca2+]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca2+]i sequestration.
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α<inf>1c</inf> subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β<inf>3</inf> subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.