The renal epithelial sodium channel (ENaC) provides regulated sodium transport in the distal nephron. The effects of intracellular calcium ([Ca2+]i) on this channel are only beginning to be elucidated. It appears from previous studies that the [Ca2+]i increases downstream of ATP administration may have a polarized effect on ENaC, where apical application of ATP and the subsequent [Ca2+]i increase have an inhibitory effect on the channel, whereas basolateral ATP and [Ca2+]i have a stimulatory effect. We asked whether this polarized effect of ATP is, in fact, reflective of a polarized effect of increased [Ca2+]i on ENaC and what underlying mechanism is responsible. We began by performing patch clamp experiments in which ENaC activity was measured during apical or basolateral application of ionomycin to increase [Ca2+]i near the apical or basolateral membrane, respectively. We found that ENaC does indeed respond to increased [Ca2+]i in a polarized fashion, with apical increases being inhibitory and basolateral increases stimulating channel activity. In other epithelial cell types, mitochondria sequester [Ca2+]i, creating [Ca2+]i signaling microdomains within the cell that are dependent on mitochondrial localization. We found that mitochondria localize in bands just beneath the apical and basolateral membranes in two different cortical collecting duct principal cell lines and in cortical collecting duct principal cells in mouse kidney tissue. We found that inhibiting mitochondrial [Ca2+]i uptake destroyed the polarized response of ENaC to [Ca2+]i. Overall, our data suggest that ENaC is regulated by [Ca2+]i in a polarized fashion and that this polarization is maintained by mitochondrial [Ca2+]i sequestration.
by
Pau Martin-Malpartida;
Silvia Arrastia-Casado;
Josep Farrera-Sinfreu;
Rudolf Lucas;
Hendrick Fischer;
Bernhard Fischer;
Douglas Eaton;
Susan Tzotzos;
Maria J Macias
Tumor necrosis factor (TNF) is a homotrimer that has two spatially distinct binding regions, three lectin-like domains (LLD) at the TIP of the protein and three basolaterally located receptor-binding sites, the latter of which are responsible for the inflammatory and cell death-inducing properties of the cytokine. Solnatide (a.k.a. TIP peptide, AP301) is a 17-mer cyclic peptide that mimics the LLD of human TNF which activates the amiloride-sensitive epithelial sodium channel (ENaC) and, as such, recapitulates the capacity of TNF to enhance alveolar fluid clearance, as demonstrated in numerous preclinical studies. TNF and solnatide interact with glycoproteins and these interactions are necessary for their trypanolytic and ENaC-activating activities. In view of the crucial role of ENaC in lung liquid clearance, solnatide is currently being evaluated as a novel therapeutic agent to treat pulmonary edema in patients with moderate-to-severe acute respiratory distress syndrome (ARDS), as well as severe COVID-19 patients with ARDS. To facilitate the description of the functional properties of solnatide in detail, as well as to further target-docking studies, we have analyzed its folding properties by NMR. In solution, solnatide populates a set of conformations characterized by a small hydrophobic core and two electrostatically charged poles. Using the structural information determined here and also that available for the ENaC protein, we propose a model to describe solnatide interaction with the C-terminal domain of the ENaCα subunit. This model may serve to guide future experiments to validate specific interactions with ENaCα and the design of new solnatide analogs with unexplored functionalities.
Adrenomedullin (ADM) is a vasodilator that causes natriuresis and diuresis. However, the direct effect of ADM on osmotic water permeability in the rat inner medullary collecting duct (IMCD) has not been tested. We investigated whether ADM and its ADM receptor components (CRLR, RAMP2, and 3) are expressed in rat inner medulla (IM) and whether ADM regulates osmotic water permeability in isolated perfused rat IMCDs. The mRNAs of ADM, CRLR, and RAMP2 and 3 were detected in rat IM. Abundant protein of CRLR and RAMP3 were also seen but RAMP2 protein level was extremely low. Adding ADM (100 nM) to the bath significantly decreased osmotic water permeability. ADM significantly decreased aquaporin-2 (AQP2) phosphorylation at Serine 256 (pS256) and increased it at Serine 261 (pS261). ADM significantly increased cAMP levels in IM. However, inhibition of cAMP by SQ22536 further decreased ADM-attenuated osmotic water permeability. Stimulation of cAMP by roflumilast increased ADM-attenuated osmotic water permeability. Previous studies show that ADM also stimulates phospholipase C (PLC) pathways including protein kinase C (PKC) and cGMP. We tested whether PLC pathways regulate ADM-attenuated osmotic water permeability. Blockade of either PLC by U73122 or PKC by rottlerin significantly augmented the ADM-attenuated osmotic water permeability and promoted pS256-AQP2 but did change pS261-AQP2. Inhibition of cGMP by L-NAME did not change AQP2 phosphorylation. In conclusion, ADM primarily binds to the CRLR-RAMP3 receptor to initiate signaling pathways in the IM. ADM reduced water reabsorption through a PLC-pathway involving PKC. ADM-attenuated water reabsorption may be related to decreased trafficking of AQP2 to the plasma membrane. cAMP is not involved in ADM-attenuated osmotic water permeability.
Aim: Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Methods: Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. Results: PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Conclusion: Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
by
Guang Yang;
Helena Pillich;
Richard White;
Istvan Czikora;
Isabelle Pochic;
Qiang Yue;
Martina Hudel;
Boris Gorshkov;
Alexander Verin;
Supriya Sridhar;
Carlos M. Isales;
Douglas Eaton;
Jurg Hamacher;
Trinad Chakraborty;
Rudolf Lucas
Pulmonary permeability edema is characterized by reduced alveolar Na+ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na+ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel’s expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na+ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
Podocytes, dynamic polarized cells wrapped around glomerular capillaries, are an essential component of the glomerular filtration barrier. BK channels consist of one of the slit diaphragm (SD) proteins in podocytes, interact with the actin cytoskeleton, and play vital roles in glomerular filtration. Mechanistic target of rapamycin (mTOR) complexes regulate expression of SD proteins, as well as cytoskeleton structure, in podocytes. However, whether mTOR complexes regulate podocyte BK channels is still unclear. Here, we investigated the mechanism of mTOR complex regulation of BK channels via real-time PCR, western blot, immunofluorescence, and patch clamping. Inhibiting mTORC1 with rapamycin or downregulating Raptor had no significant effect on BK channel mRNA and protein levels and bioactivity. However, the dual inhibitor of mTORC1 and mTORC2 AZD8055 and short hairpin RNA targeting Rictor downregulated BK channel mRNA and protein levels and bioactivity. In addition, MK2206, GF109203X, and GSK650394, which are inhibitors of Akt, PKCα, and SGK1, respectively, were employed to test the downstream signaling pathway of mTORC2. MK2206 and GF109203X had no effect on BK channel protein levels. MK2206 caused an obvious decrease in the current density of the BK channels. Moreover, GSK650394 downregulated the BK channel protein and mRNA levels. These results indicate mTORC2 not only regulates the distribution of BK channels through Akt, but also modulates BK channel protein expression via SGK1 in podocytes.
by
Michael P. Madaio;
Istvan Czikora;
Nino Kvirkvelia;
Malgorzata McMenamin;
Qiang Yue;
Ting Liu;
Haroldo Toque;
Supriya Sridhar;
Katherine Covington;
Rabei Alaisami;
Paul O'Connor;
Robert W. Caldwell;
Jian-Kang Chen;
Matthias Claus;
Michael W. Brands;
Douglas Eaton;
Maritza Romero;
Rudolf Lucas
In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen.
The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.
We examined the interaction of a membrane-associated protein, MARCKS-like Protein-1 (MLP-1), and an ion channel, Epithelial Sodium Channel (ENaC), with the anionic lipid, phosphatidylinositol 4, 5-bisphosphate (PIP2). We found that PIP2 strongly activates ENaC in excised, inside-out patches with a half-activating concentration of 21 ± 1.17 µM. We have identified 2 PIP2 binding sites in the N-terminus of ENaC β and γ with a high concentration of basic residues. Normal channel activity requires MLP-1’s strongly positively charged effector domain to electrostatically sequester most of the membrane PIP2 and increase the local concentration of PIP2. Our previous data showed that ENaC covalently binds MLP-1 so PIP2 bound to MLP-1 would be near PIP2 binding sites on the cytosolic N terminal regions of ENaC. We have modified the charge structure of the PIP2 –binding domains of MLP-1 and ENaC and showed that the changes affect membrane localization and ENaC activity in a way consistent with electrostatic theory.
by
Stephen T. Turner;
Eric Boerwinkle;
Jeffrey R. O'Connell;
Kent R. Bailey;
Yan Gong;
Arlene B Chapman;
Caitrin W. McDonough;
Amber L. Beitelshees;
Gary L. Schwartz;
John G. Gums;
Sandosh Padmanabhan;
Timo P. Hiltunen;
Lorena Citterio;
Kati M. Donner;
Thomas Hedner;
Chiara Lanzani;
Olle Melander;
Janna Saarela;
Samuli Ripatti;
Bjorn Wahlstrand;
Paolo Manunta;
Kimmo Kontula;
Anna F. Dominiczak;
Rhonda M. Cooper-DeHoff;
Julie A. Johnson
To identify novel genes influencing blood pressure response to thiazide diuretic therapy for hypertension, we conducted genome-wide association meta-analyses of ≈1.1 million single-nucleotide polymorphisms in a combined sample of 424 European Americans with primary hypertension treated with hydrochlorothiazide from the Pharmacogenomic Evaluation of Antihypertensive Responses study (n=228) and the Genetic Epidemiology of Responses to Antihypertensive study (n=196). Polymorphisms associated with blood pressure response at P<10-5 were tested for replication of the associations in independent samples of hydrochlorothiazide-treated European hypertensives. The rs16960228 polymorphism in protein kinase C, α replicated for same-direction association with diastolic blood pressure response in the Nordic Diltiazem study (n=420) and the Genetics of Drug Responsiveness in Essential Hypertension study (n=206), and the combined 4-study meta-analysis P value achieved genome-wide significance (P=3.3×10-8). Systolic or diastolic blood pressure responses were consistently greater in carriers of the rs16960228 A allele than in GG homozygotes (>4/4 mm Hg) across study samples. The rs2273359 polymorphism in the GNAS-EDN3 region also replicated for same-direction association with systolic blood pressure response in the Nordic Diltiazem study, and the combined 3-study meta-analysis P value approached genome-wide significance (P=5.5×10-8). The findings document clinically important effects of genetic variation at novel loci on blood pressure response to a thiazide diuretic, which may be a basis for individualization of antihypertensive drug therapy and identification of new drug targets.