Microtubules are highly dynamic tubulin polymers that are required for a variety of cellular functions. Despite the importance of a cellular population of tubulin dimers, we have incomplete information about the mechanisms involved in the biogenesis of αβ-tubulin heterodimers. In addition to prefoldin and the TCP-1 Ring Complex, five tubulin-specific chaperones, termed cofactors A–E (TBCA–E), and GTP are required for the folding of α- and β-tubulin subunits and assembly into heterodimers. We recently described the purification of a novel trimer, TBCD•ARL2•β-tubulin. Here, we employed hydrogen/deuterium exchange coupled with mass spectrometry to explore the dynamics of each of the proteins in the trimer. Addition of guanine nucleotides resulted in changes in the solvent accessibility of regions of each protein that led to predictions about each's role in tubulin folding. Initial testing of that model confirmed that it is ARL2, and not β-tubulin, that exchanges GTP in the trimer. Comparisons of the dynamics of ARL2 monomer to ARL2 in the trimer suggested that its protein interactions were comparable to those of a canonical GTPase with an effector. This was supported by the use of nucleotide-binding assays that revealed an increase in the affinity for GTP by ARL2 in the trimer. We conclude that the TBCD•ARL2•β-tubulin complex represents a functional intermediate in the β-tubulin folding pathway whose activity is regulated by the cycling of nucleotides on ARL2. The co-purification of guanine nucleotide on the β-tubulin in the trimer is also shown, with implications to modeling the pathway.
The advancement of glycoscience is critically dependent on the access to a large number of glycans for their functional study. Naturally occurring glycans are considered a viable source for diverse and biologically relevant glycan libraries. A mixture of free reducing glycans released from natural sources can be fluorescently tagged and separated by chromatography to produce a natural glycan library. Anthranilic acid (AA) has been widely used to fluorescently tag reducing glycans for HPLC or LC/MS analysis. However, AA conjugated glycans are not efficiently immobilized on microarray slides due to the lack of a primary alkylamine functional group. In this study, we have developed simple and efficient chemistry for bioconjugation and further functionalization of glycan-AA conjugates. This new approach enables quick preparation of glycan microarrays and neoglycoproteins from glycan-AA conjugates, which can be separated by weak anion exchange (WAX) and C18 reversed-phase HPLC.
Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins. Ancestral sequence reconstruction (ASR) and the consensus approach are compared in the generation of thermostable EF-Tu homologs. Using a combination of X-ray crystallography and molecular dynamics simulations, Okafor et al. show that while both methods yield thermostable proteins, ASR, unlike consensus, preserves the natural protein motions in EF-Tu.
As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that 'sialidase-sensitive' animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas 'sialidase-insensitive' human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world's population.
Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features were recently reported for various proteins involved in amyloid and neural inclusion disorders. Heritable yeast prions share molecular properties (and in the case of polyglutamines, amino acid composition) with human disease-related amyloids. Fundamental protein quality control pathways, including chaperones, the ubiquitin proteasome system and autophagy are highly conserved between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and prions were uncovered in the yeast model. The treatments available for neurodegenerative amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related neurodegenerative diseases have become powerful tools for high-throughput screening for chemical compounds and FDA-approved drugs that reduce aggregation and toxicity of amyloids. Although some environmental agents have been linked to certain amyloid diseases, the molecular basis of their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous inducers of prions. Studies of environmental and physiological regulation of yeast prions open new possibilities for pharmacological intervention and/or prophylactic procedures aiming on common cellular systems rather than the properties of specific amyloids.