BACKGROUND: Urea transporters (UTs) are important in urine concentration and in urea recycling, and UT-B has been implicated in both. In kidney, UT-B was originally localized to outer medullary descending vasa recta, and more recently detected in inner medullary descending vasa recta. Endogenously produced microRNAs (miRs) bind to the 3'UTR of genes and generally inhibit their translation, thus playing a pivotal role gene regulation. METHODS: Mice were dehydrated for 24 hours then sacrificed. Inner and outer medullas were analyzed by polymerase chain reaction (PCR) and quantitative PCR for miRNA expression and analyzed by western blotting for protein abundance. RESULTS: MiRNA sequencing analysis of mouse inner medullas showed a 40% increase in miRNA-200c in dehydrated mice compared with controls. An in silico analysis of the targets for miR-200c revealed that miRNA-200c could directly target the gene for UT-B. PCR confirmed that miR-200c is up-regulated in the inner medullas of dehydrated mice while western blot showed that UT-B protein abundance was down-regulated in the same portion of the kidney. However, in the outer medulla, miR-200c was reduced and UT-B protein was increased in dehydrated mice. CONCLUSIONS: This is the first indication that UT-B protein and miR-200c may each be differentially regulated by dehydration within the kidney outer and inner medulla. The inverse correlation between the direction of change in miR-200c and UT-B protein abundance in both the inner and outer medulla suggests that miR-200c may be associated with the change in UT-B protein in these 2 portions of the kidney medulla.
Two urea transporters, UT-A1 and UT-A3, are expressed in the kidney terminal inner medullary collecting duct (IMCD) and are important for the production of concentrated urine. UT-A1, as the largest isoform of all UT-A urea transporters, has gained much attention and been extensively studied; however, the role and the regulation of UT-A3 are less explored. In this study, we investigated UT-A3 regulation by glycosylation modification. A site-directed mutagenesis verified a single glycosylation site in UT-A3 at Asn279. Loss of the glycosylation reduced forskolin-stimulated UT-A3 cell membrane expression and urea transport activity. UT-A3 has two glycosylation forms, 45 and 65 kDa. Using sugar-specific binding lectins, the UT-A3 glycosylation profile was examined. The 45-kDa form was pulled down by lectin concanavalin A (Con A) and Galant husnivalis lectin (GNL), indicating an immature glycan with a high amount of mannose (Man), whereas the 65-kDa form is a mature glycan composed of acetylglucosamine (GlcNAc) and poly-N-acetyllactosame (poly-LacNAc) that was pulled down by wheat germ agglutinin (WGA) and tomato lectin, respectively. Interestingly, the mature form of UT-A3 glycan contains significant amounts of sialic acid. We explored the enzymes responsible for directing UT-A3 sialylation. Sialyltransferase ST6GalI, but not ST3GalIV, catabolizes UT-A3 α2,6-sialylation. Activation of protein kinase C (PKC) by PDB treatment promoted UT-A3 glycan sialylation and membrane surface expression. The PKC inhibitor chelerythrine blocks ST6GalI-induced UT-A3 sialylation. Increased sialylation by ST6GalI increased UT-A3 protein stability and urea transport activity. Collectively, our study reveals a novel mechanism of UT-A3 regulation by ST6GalI-mediated sialylation modification that may play an important role in kidney urea reabsorption and the urinary concentrating mechanism.
AIM: This study evaluates the effect of dapagliflozin, a SGLT2 inhibitor, on fluid or electrolyte balance and its effect on urea transporter-A1 (UT-A1), aquaporin-2 (AQP2) and Na-K-2Cl cotransporter (NKCC2) protein abundance in diabetic rats. METHODS: Diabetes mellitus (DM) was induced by injection of streptozotocin into the tail vein. Serum Na+, K+, Cl- concentration, urine Na+, K+, Cl- excretion, blood glucose, urine glucose excretion, urine volume, urine osmolality and urine urea excretion were analyzed after the administration of dapagliflozin. UT-A1, AQP2 and NKCC2 proteins were detected by western blot. RESULTS: Dapagliflozin treatment decreased blood glucose concentration by 38% at day 7 and by 47% at day 14 and increased the urinary glucose excretion rate compared with the untreated diabetic animals. Increased 24-hour urine volume, decreased urine osmolality and hyponatremia, hypokalemia and hypochloremia observed in diabetic rats were attenuated by dapagliflozin treatment. Western blot analysis showed that UT-A1, AQP2 and NKCC2 proteins are upregulated in DM rats over control rats; dapagliflozin treatment results in a further increase in inner medulla tip UT-A1 protein abundance by 42% at day 7 and by 46% at day 14, but it did not affect the DM-induced upregulation of AQP2 and NKCC2 proteins. CONCLUSION: Dapagliflozin treatment augmented the compensatory changes in medullary transport proteins in DM. These changes would tend to conserve solute and water even with persistent glycosuria. Therefore, diabetic rats treated with dapagliflozin have a mild osmotic diuresis compared to nondiabetic animals, but this does not result in an electrolyte disorder or significant volume depletion.
Urine concentration is regulated by vasopressin. Congenital nephrogenic diabetes insipidus (NDI) is caused by vasopressin type 2 receptor (V2R) mutations. We studied whether metformin could improve urine concentration in rodent models of congenital NDI by stimulating AMPK. To block the V2R in rats, tolvaptan (10 mg/kg/d) was given by oral gavage with or without metformin (800 mg/ kg/d). Control rats received vehicle with or without metformin. Tamoxifen-induced V2R KO mice were given metformin (600 mg/kg) or vehicle twice daily. Urine osmolality in tolvaptan-treated rats (1,303 ± 126 mOsM) was restored to control levels by metformin (2,335 ± 273 mOsM) within 3 days and was sustained for up to 10 days. Metformin increased protein abundance of inner medullary urea transporter UT-A1 by 61% and aquaporin 2 (AQP2) by 44% in tolvaptan-treated rats, and immunohistochemistry showed increased membrane accumulation of AQP2 with acute and chronic AMPK stimulation. Outer medullary Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) abundance increased (117%) with AMPK stimulation in control rats but not in V2R-blocked rats. Metformin increased V2R KO mouse urine osmolality within 3 hours, and the increase persisted for up to 12 hours. Metformin increased AQP2 in the V2R KO mice similar to the tolvaptan-treated rats. These results indicate that AMPK activators, such as metformin, might provide a promising treatment for congenital NDI.