About this item:

20 Views | 35 Downloads

Author Notes:

Correspondence: Liora M. Schultz, 1000 Welch Road, Stanford, CA 94304, USA. lioras@stanford.edu

Acknowledgements: We acknowledge the following individuals for their roles in supporting successful execution of this multi-institutional study. Regulatory support: Sharon Mavroukakis and Emily Egeler. Administrative support: Anika Dove. Legal Council and Contracting: Joshua Murphy. REDCap Data: The Stanford REDCap platform is developed and operated by Stanford Medicine Research IT team.

Author contributions: All authors were involved in conception and design and collection of patient data. Liora Schultz performed administrative duties. Christina Baggot and Liora Schultz designed the data collection tool. Valentin Barsan, Christina Baggott and Liora Schultz accessed and verified the underlying data reported in the manuscript. Valentin Barsan, Snehit Prabhu, Christina Baggott, YiMei Li and Liora Schultz performed statistical analysis. All authors have had full access to all the data in the study and accept responsibility for the decision to submit for publication. All authors were involved in data analysis and interpretation, manuscript writing and final manuscript approval and are accountable for all aspects of this work.

Competing interests: V.B. serves on the boards of ArsenalBio and Umoja Biopharma and consults or holds stock in Zafrens and Treeline Biosciences which are developing therapies for cancer treatment and Illumina, Invitae, Pacific Biosciences, and Guardant who are developing oncology NGS tests. C.L.M. is an inventor on several patents related to CAR T-cell therapies. C.L.M. is a cofounder of Lyell Immunopharma, CARGO Therapeutics and Link Cell Therapies, which are developing CAR-based therapies, and consults for Lyell, CARGO, Link, Ensoma, Mammoth, Immatics, Apricity, Glaxo Smith Klein, Nektar, Legend and Bristol Myers Squibb. C.L.M receives royalties for CD-22 CAR licensing from NIH, has had grant/contract funding from St. Baldrick’s Foundation, NIH, CIRM, Parker, Tune therapeutics, Lyell Immunopharma, Ludwig Institute, Emerson Collective, Department of Defense and Goldhirsh-Yellin Foundation. She is a member of the Board of Directors of CARGO Therapeutics and Link Cell Therapies and owns stocks in Lyell Immunopharma, CARGO Therapeutics, Link Cell Therapies, Ensoma, Mammoth and Apricity. T.W.L. served on advisory boards or consults for Novartis, Bayer, Aptitude Health, Jumo Health, Massive Bio, Medscape, AI Therapeutics, Jazz Pharmaceuticals, GentiBio, Menarini, Pyramid Biosciences, Targeted Oncology, Treeline Biosciences. He owns stocks/other ownership interest in advanced microbubbles. T.W.L. received research funding from Lily, Roche/Genentech, Taiho Oncology, Advanced Accelerator Applications/Novartis, Bristol-Myers Squibb, BioAtla, Pfizer, Bayer and Turning Point Therapeutics. G.D.M. received funding for medical writing from Novartis. C.L.P. served on an advisory board for Novartis. L.S. served on an advisory board for Novartis. H.S. served on an advisory board for Novartis. M.H. served on editorial advisory board for Novartis and Sobi Pharmaceuticals and is the Vice Chair for COG NHL committee and COG NHL Biology Committee. V.F. consulted for Adaptimmune. S.P. is supported by the UCSF-Stanford CERSI grant UOI FD005978 from the FDA. P.S. served on advisory board for Sobi Pharmaceuticals. A.K. received COG support for meeting attendance. K.J.C. received grant support for an investigator-initiated trial and sat on advisory boards for Novartis and Atara Biotherapeutics. M.R.V. consults for Novartis, Sanofi, Qihan, Forge, Takada and Equillium. M.R.V. has a provisional patent describing methods of producing and using immunotherapy for cancer. M.R.V.participates on the safety monitoring/advisory board for FBX-101 and owns stocks/options for Fate therapeutics.

Subjects:

Research Funding:

The REDCap platform services at Stanford are subsidised by a) Stanford School of Medicine Research Office, and b) the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through grant UL1 TR001085. This work was supported by a St Baldrick's/Stand Up 2 Cancer Pediatric Dream Team Translational Cancer Research Grant (C.L.M.). Stand Up 2 Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. C.L.M is a member of the Parker Institute for Cancer Immunotherapy, which supports the Stanford University Cancer Immunotherapy Program. The work was also supported by the Virginia and D.K. Ludwig Fund for Cancer Research. All funding sources enabled infrastructure support for this study.

Keywords:

  • Immunotherapy
  • CAR T cells
  • Tisagenlecleucel
  • First relapse
  • Pediatric oncology
  • Real-world analysis
  • Commercial CAR
  • CD19 CAR T cells

Tisagenlecleucel utilisation and outcomes across refractory, first relapse and multiply relapsed B-cell acute lymphoblastic leukemia: a retrospective analysis of real-world patterns

Show all authors Show less authors

Tools:

Journal Title:

EClinicalMedicine

Volume:

Volume 65

Publisher:

, Pages 102268-None

Type of Work:

Article | Final Publisher PDF

Abstract:

Background Tisagenlecleucel was approved by the Food and Drug Administration (FDA) in 2017 for refractory B-cell acute lymphoblastic leukemia (B-ALL) and B-ALL in ≥2nd relapse. Outcomes of patients receiving commercial tisagenlecleucel upon 1st relapse have yet to be established. We aimed to report real-world tisagenlecleucel utilisation patterns and outcomes across indications, specifically including patients treated in 1st relapse, an indication omitted from formal FDA approval. Methods We conducted a retrospective analysis of real-world tisagenlecleucel utilisation patterns across 185 children and young adults treated between August 30, 2017 and March 6, 2020 from centres participating in the Pediatric Real-World CAR Consortium (PRWCC), within the United States. We described definitions of refractory B-ALL used in the real-world setting and categorised patients by reported Chimeric Antigen Receptor (CAR) T-cell indication, including refractory, 1st relapse and ≥2nd relapse B-ALL. We analysed baseline patient characteristics and post-tisagenlecleucel outcomes across defined cohorts. Findings Thirty-six percent (n = 67) of our cohort received tisagenlecleucel following 1st relapse. Of 66 evaluable patients, 56 (85%, 95% CI 74–92%) achieved morphologic complete response. Overall-survival (OS) and event-free survival (EFS) at 1-year were 69%, (95% CI 58–82%) and 49%, (95% CI 37–64%), respectively, with survival outcomes statistically comparable to remaining patients (OS; p = 0.14, EFS; p = 0.39). Notably, toxicity was increased in this cohort, warranting further study. Interestingly, of 30 patients treated for upfront refractory disease, 23 (77%, 95% CI 58–90%) had flow cytometry and/or next-generation sequencing (NGS) minimum residual disease (MRD)-only disease at the end of induction, not meeting the historic morphologic definition of refractory. Interpretation Our findings suggested that tisagenlecleucel response and survival rates overlap across patients treated with upfront refractory B-ALL, B-ALL ≥2nd relapse and B-ALL in 1st relapse. We additionally highlighted that definitions of refractory B-ALL are evolving beyond morphologic measures of residual disease.

Copyright information:

© 2023 The Authors. Published by Elsevier Ltd.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Export to EndNote