Multi-ancestry meta-analysis identifies 5 novel loci for ischemic stroke and reveals heterogeneity of effects between sexes and ancestries

Ida Surakka, University of Michigan Medical School
Kuan-Han Wu, University of Michigan Medical School
Whitney Hornsby, University of Michigan Medical School
Brooke N. Wolford, University of Michigan Medical School
Fred Shen, University of Michigan Medical School
Wei Zhou, Emory University
Jennifer E. Huffman, VA Boston Healthcare System
Anita Pandit, University of Michigan School of Public Health
Yao Hu, Fred Hutchinson Cancer Research Center
Ben Brumpton, Norges Teknisk-Naturvitenskapelige Universitet

Only first 10 authors above; see publication for full author list.

Journal Title: Cell Genomics
Volume: Volume 3, Number 8
Publisher: Elsevier | 2023-08-09, Pages 100345-100345
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.xgen.2023.100345
Permanent URL: https://pid.emory.edu/ark:/25593/w8671

Final published version: http://dx.doi.org/10.1016/j.xgen.2023.100345

Copyright information:
© 2023 The Authors
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Accessed December 31, 2023 1:17 AM EST
Multi-ancestry meta-analysis identifies 5 novel loci for ischemic stroke and reveals heterogeneity of effects between sexes and ancestries

Highlights

- Five novel loci associated with ischemic stroke were discovered
- Previously reported ABO locus shows significant ancestry heterogeneity
- Known association in ALDH2 locus is sex and ancestry specific

Authors

Ida Surakka, Kuan-Han Wu, Whitney Hornsby, ..., Benjamin M. Neale, Cristen J. Willer, on behalf of the Global Biobank Meta-analysis Initiative (GBMI)

Correspondence

isurakka@umich.edu

In brief

By combining data from diverse Global Biobank Meta-analysis Initiative (GBMI) and the MegaStroke consortium, Surakka et al. identified five novel loci associated with ischemic stroke and showed that some genetic associations differ between sexes and ancestries. These results highlight the importance of sex- and ancestry-informed investigations in complex disease genetics.
Multi-ancestry meta-analysis identifies 5 novel loci for ischemic stroke and reveals heterogeneity of effects between sexes and ancestries

Ida Surakka,1,18,* Kuan-Han Wu,2 Whitney Hornsby,1 Brooke N. Wolford,2,3 Fred Shen,1 Wei Zhou,4,5 Jennifer E. Huffman,6 Anita Pandit,7 Yao Hu,7 Ben Brumpton,8,9,10 Anne Heidi Skoghoit,8 Maiken E. Gabrielsen,8 Robin G. Walters,11,12 The TOPMed Stroke Working Group, Million Veteran Program (MVP), Kristian Hveem,6,10 Charles Kooperberg,7 Sebastian Zöllner,3 Peter W.F. Wilson,13,14 Nadia R. Sutton,1 Mark J. Daly,4,5,15,16 Benjamin M. Neale,4,5,16 Cristen J. Willer,1,2,9,17 and on behalf of the Global Biobank Meta-analysis Initiative (GBMI)

1Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
2Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
3Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
4Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
5Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
6Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
7Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
8K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
9Clinic of Medicine, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
10HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
11Medical Research Council Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
12Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
13Atlanta VA Health Care System, Decatur, GA, USA
14Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
15Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
16Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
17Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
18Lead contact
*Correspondence: isurakka@umich.edu
https://doi.org/10.1016/j.xgen.2023.100345

SUMMARY

Stroke is the second leading cause of death and disability worldwide. Stroke prevalence varies by sex and ancestry, possibly due to genetic heterogeneity between subgroups. We performed a genome-wide meta-analysis of 16 biobanks across multiple ancestries to study the genetics of ischemic stroke (60,176 cases, 1,310,725 controls) as part of the Global Biobank Meta-analysis Initiative (GBMI) and further combined the results with previously published MegaStroke. Five novel loci for ischemic stroke (LAMC1, CALCRL, PLSCR1, CDKN1A, and SWAP70) were identified after replication in four additional datasets. One previously reported locus showed significant ancestry heterogeneity (ABO), and one showed significant sex heterogeneity (ALDH2). The ALDH2 association was male specific (males p = 1.67e-24, females p = 0.126) and was additionally observed only in the East Asian ancestry (male) samples. These findings emphasize the need for more diverse datasets with large sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups.

INTRODUCTION

Cerebrovascular accidents (stroke) are the second leading cause of death and disability worldwide due to brain infarction (ischemic stroke) or intracerebral hemorrhage.1 The former can be further divided into different subgroups, including cardioembolic, large vessel, and small vessel stroke, and the latter into lobar and non-lobar hemorrhagic stroke. Mapping genetic variants associated with stroke has been more challenging than for other homogeneous complex diseases, such as coronary artery disease5 or type 2 diabetes,7 given that stroke subgroups have different etiologies4 and heritability.5

Seventy-one loci have been identified using genome-wide association study (GWAS) methods5–28 despite the complex phenotypic heterogeneity of stroke. These studies consist of sample sizes up to 900,000 (72,000 cases with all-cause stroke) and show that genetic predisposition varies between subgroups. Most known loci are associated with ischemic stroke, likely due
to higher prevalence of that subtype (~80% of the cases) and thus more power to detect an association.29 Additionally, stroke prevalence has been shown to differ between populations of different ancestry and sexes,30 suggesting possible heterogeneity of environmental and/or genetic factors contributing to the risk for stroke. Here, we perform a new GWAS as part of the Global Biobank Meta-analysis Initiative (GBMI) to evaluate the potential role that biobanks could play in genetic discovery of complex phenotypes such as stroke. We further combine the summary statistics with the previously published MegaStroke consortium3 to further examine the genetic variants and to test whether the observed associations for ischemic stroke show either ancestry- or sex-specific effects.

RESULTS

Ischemic stroke locus discovery

We initially assessed association summary statistics from 16 biobanks with participants from various ancestries21 (Figure 1) and identified 2 potentially novel and 10 previously published loci (Table S1) with genome-wide significant association (p < 5e-8). To further increase our discovery sample size, we combined the new GBMI summary statistics with the previously published summary statistics from the MegaStroke consortium3 (all ischemic stroke summary statistics). As the MegaStroke consortium included the stroke cases from the BioBank Japan (BJJ), which also contributed to the GBMI meta-analysis, for the joint meta-analysis, we used GBMI summary statistics that excluded BJJ. By combining all available overlapping variants in these two datasets, we identified a total of 37 genome-wide significant loci (Table S1), of which 12 had not been previously published with genome-wide significance for any stroke subtype.

To further validate the 14 potentially novel ischemic stroke-associated loci emerging from GBMI (2 loci) and the joint meta-analysis with MegaStroke (12 loci), we performed replication in four additional biobanks (STAR Methods; Table S2). We were able to replicate 5 loci with a p < 3.6e-3 (Bonferroni correction for 14 tests; Table 1), with 3 additional loci showing nominal significance (Table S2). Given that the 5 replicated variants were either intergenic or intronic, we looked for the possible evidence of variant-gene expression association for the variants in the GTEx database,31 followed by a colocalization analysis of the tissue-specific gene expression association and the stroke meta-analysis association for each of the loci (Table S3). Findings show PLSCR5 and SWAP70 as likely candidate genes by having posterior probability for a shared underlying causal variant >80% with the ischemic stroke association results. Additionally, we searched for any previous publications linked to the variants and the region around them in a GWAS catalog, together with summary statistics for some of the well-known heart disease risk-related biomarkers32,33 and related traits2,35 (Table S4), to better understand the mechanisms underlying the novel ischemic stroke association. The results suggest that the first novel locus, LAMC1, might increase the stroke risk through an effect on lipid levels. This effect does not show in the association of the variant with type 2 diabetes or coronary artery disease. Furthermore, we observe significant associations (p < 0.01, Bonferroni for 5 tests) between the CDKN1A lead variant and triglyceride levels, systolic blood pressure, pulse pressure, and type 2 diabetes and between the SWAP70 lead variant and high-density lipoprotein cholesterol, total cholesterol, all three blood pressure traits, and coronary artery disease.

In 6 of the previously known loci, the GBMI trans-ancestry meta-analysis is pointing toward a different lead variant compared with the joint meta-analysis with MegaStroke (Table S1), partly due to the denser imputation reference panels used by the GBMI. For two of these loci, CENPQ and ALDH2, the new GBMI lead variant falls into the protein-coding region of the gene. When looking at the GBMI association results across all the previously published MegaStroke loci (Table S5A; Figure S1), we can see that the association results from the GBMI show deflated effect sizes compared with the MegaStroke transethnic AIS (all ischemic stroke) results (correlation of the effect sizes $R^2 = 0.62$). This suggests that the population-based sampling and the ICD-based phenotyping in the GBMI, in contrast to the majorly case-control sampling and clinically defined phenotype in MegaStroke, reduces the observed
Table 1. The 5 newly identified and replicated loci associated with ischemic stroke

<table>
<thead>
<tr>
<th>Locus</th>
<th>rsID</th>
<th>Chromosome: position hg38</th>
<th>EA/NEA</th>
<th>EAF</th>
<th>Discovery OR (95% CI)</th>
<th>Discovery p</th>
<th>Replication OR (95% CI)</th>
<th>Replication p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAMC1<sup>a</sup></td>
<td>rs4652772</td>
<td>1:183,054,561 C/G</td>
<td>0.560</td>
<td>1.03 (1.02; 1.05)</td>
<td>1.76e–8</td>
<td>1.03 (1.01; 1.05)</td>
<td>3.77e–4</td>
<td></td>
</tr>
<tr>
<td>ZSWIM2/CALCR</td>
<td>rs72896798</td>
<td>2:187,282,743 A/T</td>
<td>0.102</td>
<td>1.05 (1.03; 0.107)</td>
<td>3.22e–8</td>
<td>1.04 (1.02; 1.06)</td>
<td>8.49e–4</td>
<td></td>
</tr>
<tr>
<td>PLSCR1/PLSCR5</td>
<td>rs6762490</td>
<td>3:146,658,664 A/T</td>
<td>0.363</td>
<td>1.04 (1.02; 1.05)</td>
<td>1.48e–8</td>
<td>1.03 (1.02; 1.05)</td>
<td>1.51e–4</td>
<td></td>
</tr>
<tr>
<td>CDKN1A</td>
<td>rs762624</td>
<td>6:36,677,811 A/C</td>
<td>0.663</td>
<td>1.04 (1.03; 1.06)</td>
<td>3.65e–10</td>
<td>1.03 (1.02; 1.05)</td>
<td>1.2e–4</td>
<td></td>
</tr>
<tr>
<td>SWAP70<sup>b</sup></td>
<td>rs360156</td>
<td>11:9,735,177 T/C</td>
<td>0.448</td>
<td>0.96 (0.95; 0.97)</td>
<td>2.45e–10</td>
<td>0.97 (0.97; 0.99)</td>
<td>5.3e–4</td>
<td></td>
</tr>
</tbody>
</table>

The discovery results are presented from the joint meta-analysis of GBMI and MegaStroke summary statistics. EA, effect allele; NEA, non-effect allele; OR, odds ratio; CI, confidence interval.

^aAlso genome-wide significant in the recently published GIGASTroke meta-analysis. 36

By performing a genome-wide association analysis of ischemic stroke within GBMI followed by a joint analysis combining GBMI and previously published MegaStroke ischemic stroke summary statistics, we identified 5 novel genetic loci associated with ischemic stroke, confirmed through replication in four independent datasets. Moreover, we observed significant ancestry heterogeneity in the ABO locus and significant sex heterogeneity in the ALDH2 locus.

DISCUSSION

Many of the novel associations fall into near candidate genes with a plausible biological link with stroke risk. LAMC1 gene expression has been shown to be inversely linked with the HMGB1 expression, which promotes atherosclerosis and has been implicated in multiple cardiovascular diseases. 35 CALCR is known to regulate blood pressure, vascular biology, and inflammation. 40 PLSCR1, the most studied of the of the scramblase family members, is known to redistribute phospholipids across the plasma membrane in response to an increase of intracellular calcium 11 and has additionally been associated with...
blood coagulation.42 \textit{CDKN1A} knockout mice have been shown to develop age-dependent cardiac hypertrophy.43 Three of the putative novel loci, \textit{PRDM16} (FR/SET domain 16), \textit{GRK5} (G protein-coupled receptor kinase 5), and \textit{PLEKHA1}, showed only nominal association in the replication. Of these, \textit{PRDM16} and \textit{GRK5} have been previously linked to cardiac hypertrophy.44,45 Functional follow-up studies are needed to examine the possible connection between these candidate genes and the observed stroke association.

We observed two protein-altering lead variants that resided in \textit{CENPQ} and \textit{ALDH2} genes. \textit{CENPQ} has been previously reported to be associated with blood homocysteine levels, a known risk factor for stroke.46 \textit{CENPQ} has also been suggested to regulate \textit{MUT} expression, one of the driver genes in the causal relationship between blood homocysteine levels and small vessel stroke.47 The \textit{ALDH2} exonic lead variant, rs671, is a well-known polymorphism linked to alcohol consumption and hypertension in EAS individuals.48 This variant also showed significant sex heterogeneity where the effect of this variant is observed more strongly in men, likely due to cultural and societal differences in patterns of alcohol consumption between sexes. We observed an association with ischemic stroke for this variant only in males and, more specifically, in those with EAS ancestry.

Both exonic variants were lead variants only in the GBMI meta-analysis, highlighting the importance of the dense imputation panels allowing for better coverage of the locus in the association testing. One additional locus that was not significantly associated with ischemic stroke in the joint meta-analysis was observed in the GBMI meta-analysis near the \textit{FGF5} gene. In addition to the previous association with ischemic stroke,13 this locus is associated with blood pressure traits in Chinese individuals with a higher body mass index,49 and the expression of the \textit{FGF5} gene has been shown to be different in patients with hypertension.50 Additionally, recent studies have shown that the fibroblast growth factors (FGFs) could potentially be used to treat stroke in animal models.50

Limitations of the study

The high representation of EAS individuals was a notable strength of this investigation, likely leading to the discovery of EAS ancestry-driven sex-specific effects in the previously published \textit{ALDH2} stroke locus. Our study has several limitations despite the large overall size of the meta-analysis. First, the ischemic stroke phenotype was defined in the GBMI meta-analyses using an electronic health record (EHR)-derived phenotype definition only. This approach does not allow for dissection of results by an electronic health record (EHR)-derived phenotype definition. The stroke phenotype was defined in the GBMI meta-analyses using an electronic health record (EHR)-derived phenotype definition. Secondly, the number of participating biobanks and total number of individuals are low (Finnish ancestry [FIN], one biobank \(n = 180,062 \); SAS, one biobank \(n = 21,940 \); AMR, two biobanks \(n = 15,064 \)), resulting in limited power to fully test for ancestry-specific effects. Finally, as the two large efforts (GBMI and MegaStroke) combined in the discovery stage had majority of datasets imputed using different imputation panels, the total number of variants in the joint meta-analysis was restricted by the less dense dataset, allowing for a future study combining the datasets with state-of-the-art imputation reference panels.

OUTLOOK/CONCLUSION

We present 5 novel loci associated with ischemic stroke and show that some stroke loci have sex- and/or ancestry-specific patterns. Utilization of the EHR-based biobanks allowed investigation of large sample sizes with higher diversity. However, this comes with the cost of reduced effect sizes, likely due to imprecision of the phenotypes and more heterogeneity of case definitions. These findings emphasize the need for more diverse datasets, especially with clinically defined phenotypes and large case representation, with larger sample sizes to further understand the genetic predisposition of stroke in different ancestry and sex groups. Further effort invested in artificial intelligence (AI) or clinically informed phenotyping using full EHR information may further improve power of genetic discovery from EHR-based datasets, especially in complement to traditional case-ascertainment discovery to ensure that estimated effect sizes are appropriate.

STAR\large METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **METHOD DETAILS**
 - GBMI multi-ancestry meta-analysis
 - Joint meta-analysis of GBMI and MegaStroke
 - Replication cohorts
 - eQTL look-ups and colocalization analysis
 - GWAs catalog data
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xgen.2023.100345.

CONSORTIA

The members of the Global Biobank Meta-analysis Initiative are Wei Zhou, Masahiro Kanai, Kuan-Han H. Wu, Humaira Rasheed, Kristin Tsuo, Jibril B. Hirbo, Ying Wang, Arjun Bhattacharya, Hulling Zhao, Shiniichi Namda, Ida Surakka, Brooke N. Woford, Valeria Lo Faro, Esteban A. Lopera-Mayo, Kristi Låå, Marie-Julie Favé, Juulia J. Partanen, Sinéad B. Chapman, Juha Karjalainen, Mitja Kurki, Mutaamba Maasha, Ben M. Brumpton, Sameer Chavan, Tzu-
ACKNOWLEDGMENTS

We thank Dr. Robin Walters for the critical review of our manuscript. We would like to express our gratitude to all contributors to GBMI and the biobank participants who provided their data for biomedical research. Particularly, we are grateful to GBMI study cohorts, MGI and Bio-MI, who assisted with replication and interpretation of our findings. The authors acknowledge the participants, recruitment teams, and project managers of the GBMI for providing data aggregation, management, and distribution services in support of the research reported in this publication. We acknowledge BBJ (Yukinori Okada, Koichi Matsua, and Masahiro Kanai); BioMI (Ruth Loos, Judy Cho, Erinna Kenny, Michael Preuss, and Simon Lee); BioVU (Nancy Cox and Jibril Hirbo); Canadian Partnership for Tomorrow (Philip Awadalla and Marie-Julie Fave); China Kadoori (Robin Walters, Kuang Lin, and Iona Millwood); Colorado Center for Personalized Medicine (Kathleen Barnes, Michelle Daya, and Chris Gignoux); deCODE Genetics (Kari Stefansson and Unnur borsteinsdottir); East London A. van Heel, Sarah Finer, and Richard Trembath); Estonian Biobank (Andres Metspalu, Reedik Ma Higgins, and Mihhail Huang); UCLA Precision Health Biobank (Ruth Johnson, Yi Ding, Alex Chiou, Bogdan Pasaniuc, and Daniel Geschwind); and UK Biobank (Konrad Karczewski and Alicia Martin). The Trandelag Health Study (HUNT) is a collaboration between the HUNT Research Center (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), the Trandelag County Council, the Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. The genotyping in HUNT was financed by Stiftelsen Kristian Gerhard Jebsen, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, the Trøndelag Research Council of Norway, the Liaison Committee for Education, Research and Innovation in Central Norway, and the Joint Research Committee between St. Olav’s Hospital and the Faculty of Medicine and Health Sciences, NTNU. The genetic investigations of the HUNT Study is a collaboration between researches from the K.G. Jebsen Center for Genetic Epidemiology, NTNU and the University of Michigan Medical School, and the University of Michigan School of Public Health. The K.G. Jebsen Center for Genetic Epidemiology is financed by Stiftelsen Kristian Gerhard Jebsen, Faculty of Medicine and Health Sciences, NTNU, Norway. We want to thank clinicians and other employees at Nord-Trandelag Hospital Trust, Norway, for their support and for contributing to data collection in this research project.

AUTHOR CONTRIBUTIONS

DECLARATION OF INTERESTS

N.F.S. is an advisor for Abbott, Philips, and Shockwave and has received honoraria for speaking from Zoll, Cordis. C.J.W.’s spouse works at Regeneron Pharmaceuticals.
REFERENCES

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposited data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBMI summary statistics</td>
<td>Zhou et al. 31</td>
<td>https://www.globalbiobankmeta.org/resources and http://results.globalbiobankmeta.org</td>
</tr>
<tr>
<td>MegaStroke Ischemic stroke summary statistics</td>
<td>Malik et al. 6</td>
<td>GWAS catalog: GCST006908</td>
</tr>
<tr>
<td>Replication data</td>
<td>This paper</td>
<td>Table S2</td>
</tr>
<tr>
<td>GWAs catalog</td>
<td>https://www.ebi.ac.uk/gwas/</td>
<td>N/A</td>
</tr>
<tr>
<td>GTEx</td>
<td>Burgess 32</td>
<td>https://gtexportal.org/home/</td>
</tr>
<tr>
<td>Software and algorithms</td>
<td>Willer et al. 51</td>
<td>https://csg.sph.umich.edu/abecasis/metal/</td>
</tr>
<tr>
<td>R package coloc</td>
<td>https://cran.r-project.org/web/packages/coloc/index.html</td>
<td>N/A</td>
</tr>
<tr>
<td>R</td>
<td>https://www.r-project.org</td>
<td>N/A</td>
</tr>
</tbody>
</table>

RESOURCE AVAILABILITY

Lead contact
Ida Surakka, University of Michigan, isurakka@umich.edu.

Materials availability
No materials were produced in this project.

Data and code availability
The GBMI summary statistics are available at https://www.globalbiobankmeta.org/resources and browsing at the browser http://results.globalbiobankmeta.org, and the MegaStroke summary statistics through GWAS Catalog (https://www.ebi.ac.uk/gwas/). No significant code was produced.

METHOD DETAILS

GBMI multi-ancestry meta-analysis
The GBMI ischemic stroke meta-analysis was conducted from genome-wide association results of 16 biobanks using inverse variance weighted meta-analysis. The overall stroke dataset has 1.9% of African/African American (AFR), 19.6% of East Asian (EAS), 75.8% of European (non-Finnish European: NFE and Finns: FIN), 1.1% of Latino or admixed American (AMR), and 1.6% of South Asian (SAS) ancestry (Figure 1). A detailed description of the meta-analysis methods can be found here. 31 The GBMI stroke phenotype was defined using PheCode 433.21 (Cerebral artery occlusion, with cerebral infarction).

Joint meta-analysis of GBMI and MegaStroke
Publicly available summary statistics for the MegaStroke6 “All Ischemic Stroke” were downloaded from the GWAs-catalog (https://www.ebi.ac.uk/gwas/). The positions in the MegaStroke summary statistics were mapped to hg38 using liftover command line tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) and the overlapping SNPs between GBMI (34,124,639 variants) and MegaStroke (7,458,253 variants) were combined using METAL 51 resulting in meta-analysis of 5,633,313 SNPs (indels were excluded).

Replication cohorts
Replication of all 14 potentially novel lead variants were requested from two additional GBMI cohorts, Penn Medicine Biobank (PMBB, NFE: 1,226 cases, 25,228 controls, AFR: 787 cases, 9,319 controls) and Canadian Partnership for Tomorrow’s Health (CanPath, NFE: 70 cases, 7,190 controls). Analyses in these two cohorts were performed using the standard GBMI analysis pipeline. 31 Furthermore, we received replication results from Million Veteran Program (MVP) and Trans-Omics for Precision Medicine...
(TOPMed) Program. The MVP analysis was performed using plink2a and with the EHR based stroke phenotype and covariates defined in Klarin et al. Analysis was completed within each HARE-defined ancestry group with 7,581/112,230 AFR (African), 21,199/429,518 EUR (European), 18,83/490,53 HIS (Hispanic) and 217,779 ASN (Asian) ancestry cases/controls. The TOPMed results have been previously published and the analysis details can be found from the original publication. All TOPMed cohorts are included in the MegaStroke effort so none of the variants emerging from the joint meta-analysis were tested in the TOPMed in the replication stage. Additionally, TOPMed includes one overlapping biobank with GBMI (BioMe), which was not accounted for as neither of the two variants where TOPMed replication was used replicated.

eQTL look-ups and colocalization analysis
For each of the replicated novel variants, significant eQTLs were looked up from the GTEx database (https://gtexportal.org/home/). For all significant SNP × tissue specific gene expression pairs colocalization analysis was run using R package coloc (https://cran.r-project.org/web/packages/coloc/index.html) function coloc.abf() using the full GTEx cis-eQTL results (for each gene, 1Mb upstream and downstream included). We restricted the analysis to a ±500Kb window around the stroke associated lead variant.

GWAs catalog data
We downloaded reported significant (P-value < 5e-8) associations from the GWAs Catalog (https://www.ebi.ac.uk/gwas/) to define the novelty of our associated variants (GWAs catalog traits: Stroke, Ischemic Stroke) and to find any other phenotypic associations for our novel replicated variants (look-up by ±100Kb and ±250Kb window around the lead variant). Both data were downloaded on June 15th, 2022.

QUANTIFICATION AND STATISTICAL ANALYSIS
A detailed description of the GBMI meta-analysis methods can be found here. The joint meta-analysis of GBMI and MegaStroke was conducted using METAL inverse variance weighted meta-analysis. The replication results were combined using inverse variance weighted meta-analysis. The heterogeneity between ancestries and between sexes was tested using Cochran’s Q statistic implemented in METAL software. The colocalization of Stroke association and eQTL association was tested using R package coloc (https://cran.r-project.org/web/packages/coloc/index.html) with default prior probabilities (p1 = 1 × 10^-4, p2 = 1 × 10^-4, p12 = 1 × 10^-5).