About this item:

62 Views | 28 Downloads

Author Notes:

Meltem Kutlar Joss, meltem.kutlar@swisstph.ch

MKJ, BH, and ES were responsible for drafting the article; Panel members, MKJ, RK, and PH as well as AP, HB were responsible for the design and conduct of the broader systematic review on health effects of ambient air pollution, on which this work is based. ES and RA conducted formal analysis. ES conducted the extended analysis and prepared the figures on results of the meta-analyses. All authors were responsible for revising the article critically for important intellectual content. All authors contributed to the article and approved the submitted version.

The authors would like to thank the consultants to the Panel, external reviewers, HEI staff and contract team members involved in the preparation of the comprehensive review report. Bert Brunekreef, Institute for Risk Assessment Sciences, Environmental Epidemiology, Utrecht University, Netherlands; Dan Crouse, Health Effects Institute, Boston, MA, United States; Alan da Silveira Fleck, Health Effects Institute, Boston, MA, United States; Dan Greenbaum, Health Effects Institute, Boston, MA, United States; Leonie Hoffmann, University of Düsseldorf, Germany; Frank Kelly, School of Public Health, Imperial College, London, United Kingdom; Julia Fussell, School of Public Health, Imperial College, London, United Kingdom; Tim Nawrot, Hasselt University, Hasselt, Flanders, Belgium; Robert O’Keefe, Health Effects Institute, Boston, MA, United States; Martha Ondras, Health Effects Institute, Boston, MA, United States; Zoe Roth, Swiss Tropical and Public Health Institute, University of Basel, Switzerland; Margaux Sadoine, Health Effects Institute, Boston, MA, United States; Rashik Shaikh, Health Effects Institute, Boston, MA, United States; Lara Stucki, Swiss Tropical and Public Health Institute, University of Basel, Switzerland; Eva Tanner, Health Effects Institute, Boston, MA, United States; Annemoon van Erp, Health Effects Institute, Boston, MA, United States; Eleanne van Vliet, Health Effects Institute, Boston, MA, United States; Greg Wellenius, Boston University School of Public Health, Boston, MA, United States; Elina Wüthrich, Swiss Tropical and Public Health Institute, University of Basel, Switzerland.

Author FL was employed by the company Sonoma Technology, Inc. The remaining authors declare that they do not have any conflicts of interest.

Subjects:

Research Funding:

Research described in this article was conducted under contract to the HEI, an organization jointly funded by the United States Environmental Protection Agency (EPA) [Assistance Award No. CR-83998101] and certain motor vehicle and engine manufacturers. MKJ work is supported by the Swiss Federal Office for the Environment [Grant No. 17.0094.PJ/R192-0332] as part of its funding for the work of the LUDOK-database. The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

Keywords:

  • NO2
  • confidence assessment
  • diabetes
  • particulate matter
  • traffic-related air pollution
  • Adult
  • Humans
  • Air Pollutants
  • Air Pollution
  • Environmental Exposure
  • Diabetes Mellitus
  • Incidence
  • Particulate Matter

Long-Term Exposure to Traffic-Related Air Pollution and Diabetes: A Systematic Review and Meta-Analysis

Show all authors Show less authors

Tools:

Journal Title:

International Journal of Public Health

Volume:

Volume 68

Publisher:

, Pages 1605718-1605718

Type of Work:

Article | Final Publisher PDF

Abstract:

Objectives: We report results of a systematic review on the health effects of long-term traffic-related air pollution (TRAP) and diabetes in the adult population. Methods: An expert Panel appointed by the Health Effects Institute conducted this systematic review. We searched the PubMed and LUDOK databases for epidemiological studies from 1980 to July 2019. TRAP was defined based on a comprehensive protocol. Random-effects meta-analyses were performed. Confidence assessments were based on a modified Office for Health Assessment and Translation (OHAT) approach, complemented with a broader narrative synthesis. We extended our interpretation to include evidence published up to May 2022. Results: We considered 21 studies on diabetes. All meta-analytic estimates indicated higher diabetes risks with higher exposure. Exposure to NO2 was associated with higher diabetes prevalence (RR 1.09; 95% CI: 1.02; 1.17 per 10 μg/m3), but less pronounced for diabetes incidence (RR 1.04; 95% CI: 0.96; 1.13 per 10 μg/m3). The overall confidence in the evidence was rated moderate, strengthened by the addition of 5 recently published studies. Conclusion: There was moderate evidence for an association of long-term TRAP exposure with diabetes.

Copyright information:

© 2023 Kutlar Joss, Boogaard, Samoli, Patton, Atkinson, Brook, Chang, Haddad, Hoek, Kappeler, Sagiv, Smargiassi, Szpiro, Vienneau, Weuve, Lurmann, Forastiere and Hoffmann.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote