About this item:

91 Views | 22 Downloads

Author Notes:

emilie.barruet@ucsf.edu

EB was involved in the design, collection, and assembly of data, data analysis and interpretation, and manuscript writing. BMM, WL, HK, AU assisted with the experiments and the differentiation of hiPSCs. SAW helped design and perform transwell experiments. MPW, CVT, and DS assisted with the development and analysis of endothelial differentiation from hiPSCs. ECH was responsible for the conception and design, financial support, and manuscript writing. All authors were involved in drafting the manuscript and revising it. All authors read and approved the final manuscript.

The authors would like to thank Eileen Shore, Anne Zovein, Koen Schepers, Mary Nakamura, and Debby Gawlitta for valuable comments and discussion; Susan Fisher for support from the UCSF Stem Cell Core; and Kate Jordan and Kristie Yu for technical assistance.

The authors declare that they have no competing interest. ECH receives research grant support from Clementia Pharmaceuticals for a clinical trial related to FOP but not related to this work.

Subjects:

Research Funding:

This work was supported in part by a National Institutes of Health (NIH) K08 Career Development Grant (AR056299 to ECH), Doris Duke Charitable Foundation Clinical Scientist Development Award (2014099 to ECH), March of Dimes (5-FY12-167 and 1-FY14-211 to ECH), UCSF Pilot Grant for Junior Investigators, and a FOP Developmental Grant from the Center for Research in FOP and Related Disorders (to ECH). AU and ECH received support from an NIH Diversity Supplement (R03AR060986-02). EB received support from the California Institute for Regenerative Medicine Fellowship Program to UCSF (TG2-01153). BMM received support through the CIRM Bridges Program to the City College of San Francisco (TB1-01188).

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Cell & Tissue Engineering
  • Cell Biology
  • Medicine, Research & Experimental
  • Research & Experimental Medicine
  • ACVR1
  • Fibrodysplasia ossificans progressiva
  • Tissue fibrosis
  • hiPS-derived endothelial cells
  • BMP
  • Activin A signaling
  • HETEROTOPIC OSSIFICATION
  • EXTRACELLULAR-MATRIX
  • PROGENITOR CELLS
  • ACTIVIN
  • EXPRESSION
  • FATE
  • MINERALIZATION
  • IDENTIFICATION
  • ANGIOGENESIS
  • INDUCTION

The ACVR1 R206H mutation found in fibrodysplasia ossificans progressiva increases human induced pluripotent stem cell-derived endothelial cell formation and collagen production through BMP-mediated SMAD1/5/8 signaling

Journal Title:

STEM CELL RESEARCH & THERAPY

Volume:

Volume 7, Number 1

Publisher:

, Pages 115-115

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: The Activin A and bone morphogenetic protein (BMP) pathways are critical regulators of the immune system and of bone formation. Inappropriate activation of these pathways, as in conditions of congenital heterotopic ossification, are thought to activate an osteogenic program in endothelial cells. However, if and how this occurs in human endothelial cells remains unclear. Methods: We used a new directed differentiation protocol to create human induced pluripotent stem cell (hiPSC)-derived endothelial cells (iECs) from patients with fibrodysplasia ossificans progressiva (FOP), a congenital disease of heterotopic ossification caused by an activating R206H mutation in the Activin A type I receptor (ACVR1). This strategy allowed the direct assay of the cell-autonomous effects of ACVR1 R206H in the endogenous locus without the use of transgenic expression. These cells were challenged with BMP or Activin A ligand, and tested for their ability to activate osteogenesis, extracellular matrix production, and differential downstream signaling in the BMP/Activin A pathways. Results: We found that FOP iECs could form in conditions with low or absent BMP4. These conditions are not normally permissive in control cells. FOP iECs cultured in mineralization media showed increased alkaline phosphatase staining, suggesting formation of immature osteoblasts, but failed to show mature osteoblastic features. However, FOP iECs expressed more fibroblastic genes and Collagen 1/2 compared to control iECs, suggesting a mechanism for the tissue fibrosis seen in early heterotopic lesions. Finally, FOP iECs showed increased SMAD1/5/8 signaling upon BMP4 stimulation. Contrary to FOP hiPSCs, FOP iECs did not show a significant increase in SMAD1/5/8 phosphorylation upon Activin A stimulation, suggesting that the ACVR1 R206H mutation has a cell type-specific effect. In addition, we found that the expression of ACVR1 and type II receptors were different in hiPSCs and iECs, which could explain the cell type-specific SMAD signaling. Conclusions: Our results suggest that the ACVR1 R206H mutation may not directly increase the formation of mature chondrogenic or osteogenic cells by FOP iECs. Our results also show that BMP can induce endothelial cell dysfunction, increase expression of fibrogenic matrix proteins, and cause differential downstream signaling of the ACVR1 R206H mutation. This iPSC model provides new insight into how human endothelial cells may contribute to the pathogenesis of heterotopic ossification.

Copyright information:

© The Author(s). 2016

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote