Virology under the Microscope-a Call for Rational Discourse

Mehul Suthar, Emory University
Walter Orenstein, Emory University
Guido Silvestri, Emory University
Anice Lowen, Emory University
Seema Lakdawala, Emory University
Christopher Neufeldt, Emory University
Richard Plemper, Emory University
Felicia Goodrum, The University of Arizona
James Alwine, The University of Arizona
Arturo Casadevall, Johns Hopkins Bloomberg School of Public Health

Journal Title: mBio

Volume: Volume 14, Number 1

Publisher: American Society for Microbiology | 2023-01-01, Pages e0018823-e0018823

Type of Work: Article | Final Publisher PDF

Publisher DOI: 10.1128/mbio.00188-23

Permanent URL: https://pid.emory.edu/ark:/25593/w5ncq

Final published version: http://dx.doi.org/10.1128/mbio.00188-23

Copyright information:

© 2023 Goodrum et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed October 15, 2023 9:57 AM EDT
Virology under the Microscope—a Call for Rational Discourse


#Declarations of Interest

Thomas Gallagher, International license. Of the Creative Commons Attribution 4.0 International license. © 2023 Goodrum et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Address correspondence to Felicia Goodrum, fgoodrum@arizona.edu. The authors declare a conflict of interest. Sana Biotechnology has licensed intellectual property of D.B. and Washington University in St. Louis. Gilead Sciences has licensed intellectual property of D.B. and Stanford University. D.B. is a co-founder of Clade Therapeutics. D.B. previously served on an advisory panel for GlaxoSmithKline. D.B. and The University of Arizona hold a patent on SARS-CoV-2 serological assays. K.C. is a special government employee and a member of the Office of AIDS Research Advisory Committee. Continued on next page.
January/February 2023 Volume 14 Issue 1 10.1128/mbio.00188-23

Commentary mBio

*Johns Hopkins University, Baltimore, Maryland, USA
*Harvard Medical School, Boston, Massachusetts, USA
*University of Pittsburgh, Pittsburgh, Pennsylvania, USA
*Western University, London, Ontario, Canada
*Yale University, New Haven, Connecticut, USA
*University of Kentucky, Lexington, Kentucky, USA
*University of Utah, Salt Lake City, Utah, USA
*Princeton University, Princeton, New Jersey, USA
*Icahn School of Medicine at Mount Sinai, New York, New York, USA
*Montana State University, Bozeman, Montana, USA
*University of Toronto, Toronto, Ontario, Canada
*Florida Research and Innovation Center, Port Saint Lucie, Florida, USA
*Loyola University, Maywood, Illinois, USA
*University of California, Berkeley, Berkeley, California, USA
*Columbia University, New York, New York, USA
*University of Washington, Seattle, Washington, USA
*Duke University, Durham, North Carolina, USA
*Arizona State University, Tempe, Arizona, USA
*MRC-University of Glasgow, Glasgow, United Kingdom
*Baylor University, Houston, Texas, USA
*Louisiana State University, Shreveport, Louisiana, USA
*Ulm University, Ulm, Germany
*University of Massachusetts, Worcester, Massachusetts, USA
*Northwestern University, Chicago, Illinois, USA
*University of Minnesota, Minneapolis, Minnesota, USA
*Dartmouth College, Lebanon, New Hampshire, USA
*The Ohio State University, Columbus, Ohio, USA
*University of Iowa, Iowa City, Iowa, USA
*Iowa State University, Ames, Iowa, USA
*New York University, New York, New York, USA
*University of Rochester, Rochester, New York, USA
*Emory University, Atlanta, Georgia, USA
*Cleveland Clinic, Cleveland, Ohio, USA
*Wake Forest University, Winston-Salem, North Carolina, USA
*University of Southern California, Los Angeles, California, USA
*Wayne State University, Detroit, Michigan, USA
*University of Texas, Dallas, Texas, USA
*Georgia State University, Atlanta, Georgia, USA
*Michigan State University, East Lansing, Michigan, USA
*The Rockefeller University, New York, New York, USA
*St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
*University of California, Irvine, Irvine, California, USA
*University of Colorado, Boulder, Colorado, USA
*The Peter Doherty Institute, Melbourne, Victoria, Australia
*The Pennsylvania State University, University Park, Pennsylvania, USA
*Medical College of Wisconsin, Milwaukee, Wisconsin, USA
*University of Georgia, Athens, Georgia, USA
*A*STAR Infectious Diseases Labs, Singapore
*Kansas State University, Manhattan, Kansas, USA
*University of Cambridge, Cambridge, United Kingdom
*University of Pennsylvania, Philadelphia, Pennsylvania, USA
*University of Connecticut, Farmington, Connecticut, USA
*Monash University, Clayton, Victoria, Australia
ABSTRACT  Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.

KEYWORDS  COVID-19, Coronavirus, DURC, Gain of function, SARS-CoV-2, biosafety, influenza, pandemic, vaccines, zoonosis

Just 30,000 nucleotides of single-stranded RNA, neatly packaged as a coronavirus, brought the world to its knees socially, economically, ethically, and morally during the COVID-19 pandemic. COVID-19 has cast a harsh light on the many cracks, fissures and disparities in our public health system, and the inability to broadly come together to face a colossal crisis and focus on the needs of the most vulnerable. However, scientists worked together and responded to the threat with impressive speed, drawing on critical previous research on coronaviruses and other viral systems. Virologists, immunologists and microbiologists from around the globe collaborated together with scientists from allied disciplines, such as infectious diseases and epidemiology. They confronted the virus through research to understand its pathogenesis and transmission, through surveillance to track the emergence of variants, and through the development of rapid tests, vaccines, antivirals and monoclonal antibodies. The SARS-CoV-2 pandemic would have claimed a substantially larger number of lives and caused more economic disruption were it not for this unprecedented collaborative scientific response. Nevertheless, the SARS-CoV-2 pandemic has also brought virology under the microscope with concerns about safety of virology research and the uncertainties around the origins of SARS-CoV-2. Here we provide an evidence-based discourse to address key issues.

Virology research under scrutiny. Congress has a constitutional mandate to provide oversight to federally funded research. As a new Congress convenes in the United States, there is an opportunity for oversight hearings related to research in virology and the virology community stands ready to partner with Congress and lend our expertise. Our hope is that these hearings will highlight the enormous contributions of virology, including gain-of-function experiments, to human health (Table 1). However, we fear that some may use any such hearings to discredit virology and virologists and – whether intentional or not – add fuel to an anti-science, fear-based movement. Should such hearings lead to Congress legislating restrictions on scientific research, the outcome could impede our ability to predict, prepare, and respond to emerging viral threats. An equally devastating outcome would be to sow even more public distrust in science, which would limit our ability to confront viruses in general and increase the human burden from viral diseases.

The origin of SARS-CoV-2. A major point of contention in discussions of the COVID-19 pandemic has been the origin of SARS-CoV-2, with two major camps arguing that the virus either originated from animal-to-human transmission (zoonosis) or by a laboratory leak (1–3). Most virologists have been open-minded about the possible origins of SARS-CoV-2 and have formed opinions based on the best available evidence, as is done for all scientific questions (4). While each of these possibilities is plausible and has been investigated, currently the
zoonosis hypothesis has the strongest supporting evidence (5–8). Zoonosis involves transmission of the virus as a consequence of close proximity between humans and wild animals, a scenario that has occurred repeatedly over time, leading to the emergence of many viruses, including Ebola virus, other coronaviruses, influenza A virus, mpox virus, and others (9–11). The lab-origin hypothesis suggests an accident at best or nefarious actors at the worst. At this time and based on the available data, there is no compelling evidence to support either of these lab-origin scenarios. It is important that scientists, the public, and public figures follow the evidence and limit speculation that can become fodder for misinformation and conspiracy theories. For example, on January 1, 2023, USA Today published an article discussing where the next pandemic could originate and disproportionately emphasized risk from manmade threats and lab accidents while minimizing the fact that most pandemics are zoonoses and never mentioning how virological research could mitigate risk (12). Unfounded accusations of a lab leak event or nefarious research in Chinese laboratories will hasten the deterioration of important partnerships between the US and China that are critical for early detection and preparedness for seasonal influenza and future pandemics.

**Gain-of-function research.** Despite the paucity of evidence for a laboratory-origin of SARS-CoV-2, discussion of this possibility has driven a second controversy to the forefront of science policy discussion: the use of gain-of-function approaches in virology. Although the phrase ‘gain-of-function’ is very problematic and inexact, it is commonly used, and we will use it here cautioning all its limitations (13). The source of concern in this area is that changing a virus to add new functionality may yield a dangerous pathogen. It is important to understand, however, that gain-of-function approaches incorporate a large proportion of all research because they are a powerful genetic tool in the laboratory. These include the development of cancer therapeutics, bacterial strategies for bioremediation, and the engineering of drought- or pest-resistant crops (Table 2). For example, some oncolytic viruses used to treat cancer mediate their effects because, using gain-of-function approaches, they have been endowed with new properties that kill tumors. At least two FDA-approved products resulted from providing viruses with new functions (Table 2). Gain-of-function research with pathogens of pandemic potential established that avian influenza viruses have the capacity to acquire mammalian transmissibility and that bat-associated coronaviruses posed a danger to humans years before COVID-19 (Table 2).

### TABLE 1 Human viral diseases for which virology research has delivered vaccines and antiviral drugs

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vaccine</th>
<th>Antiviral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenovirus</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>AIDS</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cervical and Head/neck Cancer</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>COVID-19</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ebola virus</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Japanese encephalitis</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Herpes (HSV and CMV)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Influenza</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Measles</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Mpox</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mumps</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Polio</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rabies</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Rubella</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Smallpox</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tick borne encephalitis</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yellow fever</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Varicella and zoster</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Despite these clear benefits, a narrative has developed suggesting that gain-of-function research is synonymous with high-risk or nefarious activity to engineer or enhance pandemic pathogens. In truth, gain-of-function research is a valuable experimental approach that virologists use to address essential questions. Virologists do not take their work lightly and thoughtfully propose experiments to address essential questions. Virologists do not operate in isolation to judge the risks of experiments: layers of regulation are in place such that risks are considered by individuals with diverse perspectives and expertise (Fig. 1). The vast majority of virology experiments could not enhance pandemic potential (referred to in the United States as gain-of-function research-of-concern). Those rare experiments that could are currently subject to stringent oversight through the U.S. Government under programs known as dual-use- research-of-concern (DURC) (14) and potential-pandemic-pathogens-care-and-oversight (P3CO) (15) (Fig. 2), and also by the vast majority of international publishers, including the American Society for Microbiology (ASM) and the Public Library of Science (PLOS) (Fig. 3). There are clearly experiments where the risks outweigh the benefits, and it is important that mechanisms exist to prevent such experiments. However, in many cases, gain-of-function research-of-concern can very clearly advance pandemic preparedness and the development of vaccines and antivirals. These tangible benefits often far outweigh the theoretical risks posed by modified viruses. Thus, it is important that oversight mechanisms faithfully consider both risks and benefits of these types of studies. It is equally important that the mechanisms used to provide oversight of gain-of-function research-of-concern be focused on research that is indeed of concern. Identifying research of concern is complex but it is critical that safeguards be both thoughtfully designed and implemented to avoid suppressing innovation in a field essential to mitigating infectious disease threats and with the potential to transform health.

### Table 2: Examples of useful gain-of-function experiments

<table>
<thead>
<tr>
<th>Goal/result</th>
<th>Microbe</th>
<th>Gain-of-Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insect control</td>
<td>Baculovirus</td>
<td>Scorpion neurotoxin</td>
<td>(18)</td>
</tr>
<tr>
<td>Solid tumor therapy</td>
<td>Vaccinia</td>
<td>GM-CSF Expression</td>
<td>(19)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Melanoma therapy</td>
<td>Herpes Simplex</td>
<td>GM-CSF Expression</td>
<td>(20)</td>
</tr>
<tr>
<td>COVID-19 vaccine</td>
<td>Adenovirus type 26</td>
<td>Expression of SARS-CoV-2 spike protein</td>
<td>(21)&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td>Repair Cardiac pacemaker</td>
<td>Adenovirus</td>
<td>Expression of sinalstrial node transcription factor</td>
<td>(22)</td>
</tr>
<tr>
<td>Treatment of bacterial infectious diseases</td>
<td>Bacteriophages</td>
<td>Expression of various payloads to enhance activity</td>
<td>(23)</td>
</tr>
<tr>
<td>Treating Citrus tree greening disease</td>
<td>Citrus tristeza virus</td>
<td>Spinach Defensin expression</td>
<td>(24)</td>
</tr>
<tr>
<td>Enhanced Lithium Batteries</td>
<td>E4 and M13 bacteriophage</td>
<td>Modified coat protein for carbon nanotube and cation binding</td>
<td>(25)</td>
</tr>
<tr>
<td>Rabbit control through immunocontraception</td>
<td>Myxoma virus</td>
<td>Expression of rabbit zona pellucida glycoproteins</td>
<td>(26)&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Mouse control through immunocontraception</td>
<td>Ectromelia</td>
<td>Expression of mouse zona pellucida glycoproteins</td>
<td>(27)&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td>Faster computers</td>
<td>M13 bacteriophage</td>
<td>Increased electrical conductance</td>
<td>(28)</td>
</tr>
<tr>
<td>Established that HSN1 has capacity for mammalian transmissibility</td>
<td>H5N1</td>
<td>Mutations leading to mammalian transmission</td>
<td>(29, 30)</td>
</tr>
<tr>
<td>Established danger from bat SARS-like coronavirus to humans</td>
<td>SARS-CoV</td>
<td>Bat coronavirus spike protein</td>
<td>(31)</td>
</tr>
<tr>
<td>Drought and salt resistance in plants</td>
<td>Arabidopsis</td>
<td>Over expression of vacuolar H + -ATPase</td>
<td>(32)</td>
</tr>
<tr>
<td>Resistance to dengue virus to reduce transmission</td>
<td>Mosquitoes</td>
<td>Transgenic expression of antibody to dengue virus</td>
<td>(33)</td>
</tr>
<tr>
<td>Resistance to freezing</td>
<td>Many species from plant to animals</td>
<td>Expression of anti-freeze proteins</td>
<td>(34)</td>
</tr>
<tr>
<td>Increase nitrogen fixation to reduce fertilizer need</td>
<td>Klebsiella varicola</td>
<td>122-fold increase in nitrogen fixation genes</td>
<td>(35)</td>
</tr>
<tr>
<td>Develop a new vaccine against cryptococcosis</td>
<td>Cryptococcus neoformans</td>
<td>Expression of gamma-interferon</td>
<td>(36)</td>
</tr>
<tr>
<td>Hormones for human therapy (e.g. insulin)</td>
<td>E. coli</td>
<td>Synthesis of human hormone (e.g. insulin)</td>
<td>(37)</td>
</tr>
<tr>
<td>Enzymes for food prepn such as pectinases for improved juice production</td>
<td>Yeast species</td>
<td>Enzyme expression for industrial use</td>
<td>(38)</td>
</tr>
<tr>
<td>CAR T cells</td>
<td>Lentivirus</td>
<td>Cancer immunotherapy</td>
<td>(39)</td>
</tr>
<tr>
<td>Dengue vaccine</td>
<td>Dengue/yellow fever virus</td>
<td>Recombinant DNA technology replaces genetic sequences in the yellow fever vaccine with dengue virus sequences</td>
<td>(40)&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup>FDA approved product.
<sup>b</sup>Experiments done in viruses that classify as pathogens with pandemic potential.

---

**Commentary mBio**

January/February 2023 Volume 14 Issue 1 10.1128/mbio.00188-23
Federal and Institutional Regulations that Cover the Majority of Microbiology Research

**Federal Regulations**

1. **HHS / CDC - Biosafety for Microbiological and Biomedical Laboratories**
   - Sets guidelines and biosafety levels (BSL 1, 2, 2 enhanced, 3, and 4) for research on pathogens

2. **HHS / NIH - Guidelines for Research Involving Recombinant DNA or Synthetic Nucleic Acid Molecules (84 FR 17858)**
   - Sets the guidelines for institutional Biosafety Committees (IBC)
   - Requires 2 community members (not employed by the institution) be voting members of the committee.

3. **USDA APHIS**
   - Registration of research with animal or plant pathogens (e.g., avian influenza viruses)
   - Permit requires on-site inspections every 3 years and annual renewals

**Institutional Regulations**

1. **Environmental Health and Safety Office (EHSO)**
   - Overseas annual laboratory inspections
   - Sets biosafety training requirements for research staff
   - Maintains records of biosafety inspections and trainings

2. **Institutional Biosafety Committee (IBC)**
   - Reviews the procedures and experimental details of any research involving genetic manipulation of viruses and bacteria
   - Makes recommendations regarding biosafety level and practices to ensure safety
   - Notifies the NIH of research not conducted in accordance of 84 FR 17858 guidelines
   - Engages the institutional Review Entity (IRE), which has institutional oversight over dual use research of concern, as appropriate
   - Committee includes principal investigators, biosafety officers (from the EHSO), 2 community members and others with relevant expertise
   - Approval of a protocol by the IBC is required before the initiation of any research

**FIG 1** Federal and institutional regulations. A brief breakdown of current U.S. Department of Health and Human Services regulations on microbiology research and the implementation of federal requirements by individual institutions, through various committees and processes. Important additional oversight that is not shown includes that provided by occupational health services to ensure safety of research personnel, and federal and institutional regulation of research involving vertebrate animals or human subjects, which are overseen by Institutional Animal Care and Use Committees (IACUC; animal research) and Institutional Review Boards (IRB; human subjects research).

Existing regulation of virology research in the United States. Without qualification, appropriate precautions should be taken to minimize laboratory accidents or the unjustified engineering of pathogens with enhanced pandemic potential. This is a shared goal for scientists and regulators. Virological research in the United States is subject to federal regulation through the Department of Health and Human Services and the U.S. Department of Agriculture for work involving human, animal, and plant pathogens. Federal policies are guided by the Biosafety in Microbiological and Biomedical Laboratories (BMBL)
guidelines (16) published by the Centers for Disease Control and Prevention (CDC) and implemented by Institutional Biosafety Committees (IBCs) that manage the safety and practice of laboratory research at the local level (Fig. 1). The National Institutes of Health (NIH) established guidelines for the creation of IBCs in 1976 and updates these guidelines periodically. While each institution may have additional specific policies, the NIH requires that IBCs approve of research involving genetic manipulation of pathogens and that members of the local community are engaged through their inclusion on IBCs. As noted above, further oversight for research involving viruses with pandemic potential exists at multiple levels,
including federal funding agencies (e.g., Department of Health and Human Services, Department of Defense), institutions (e.g., colleges, universities, and research institutes), and most accredited publishers of scientific research (Fig. 2 and 3) (17). It is important that we work to ensure appropriate and consistent implementation of these existing safeguards. We should also seek to develop international partnerships to ensure appropriate oversight is in place worldwide. While policy and infrastructure should frequently be reassessed with the goal of updating and improving biosafety and biosecurity, policy should not be changed rashly and without consideration of potential unintended consequences. Given the scientific complexities involved, such decisions should not be legislated. They should instead be made after full consideration by scientists with the relevant expertise – with appropriate oversight from Congress.

**FIG 3** Publishing process for articles involving gain-of-function research-of-concern or with pathogens of pandemic potential at ASM journals. Articles in the GOF/DURC/P3 category are flagged by multiple layers at the screening stage. This process will initiate discussion among the scientific editor in chief and other subject matter experts and lead to a publication decision after careful consideration of risks and benefits.
Conclusion. As we enter the fourth year of the COVID-19 pandemic, it is clear that the scientific establishment has been the most effective shield protecting humanity from this calamity through the delivery of rapid tests, vaccines, antibody therapies, and small molecule antivirals. Millions are alive today that would otherwise be dead thanks to society’s investment in creating and maintaining a vibrant scientific enterprise. In the debate on further restrictions around gain-of-function research and new regulations on virology in general, it is important to appreciate the existing framework of regulations at the federal and institutional levels. It is also critical to recognize that our ability to respond rapidly to emerging viral threats is dependent on our ability to apply the tools of modern biology to viruses. Regulations that are redundant with current practice or overly cumbersome will lead to unwarranted constraints on pandemic preparation and response and could leave humanity more vulnerable to future disease outbreaks. Gain-of-function research has been an extremely valuable tool in the development of vaccines and antivirals (Table 2). It already has layers of regulations and checks in place to ensure that potentially unsafe research is immediately reported (Fig. 2). It is critical that policy makers, virologists, and biosafety experts work together to ensure that research is conducted safely, with the common goal of reducing the burden of disease caused by viruses.

ACKNOWLEDGMENTS

The opinions expressed reflect those of the authors, and not necessarily the opinions of ASM, the authors’ institutions, or funding agencies. We acknowledge Johnny Chang for his assistance with graphics.

No funding was used to support this commentary, but we wish to disclose funding from agencies received by authors. JCA None WJA NIH DCA NIH JDB NIH BWB CIHR, NSERC LB Associazione Italiana per la Ricerca sul Cancro, ICGEB SBM NIH DB NIH, Private Foundation DBM Private Foundation DCB NIH, Private Foundation ACB NIH SB None CRB NIH, NSF, Private Foundation Ajb USDA, Biotechnology and Biological Sciences Research Council (BSSRC), UK CBB NIH, DOD CEC NIH SKC NIH PC NIH AC NIH GCC NIH ARC NIH, Private Foundation JMC NIH KC NIH BD NIH MDD NIH, Burroughs Wellcome Investigators in the Pathogenesis of Infectious Disease Program KD None JAD NIH, Private Foundation TSD NIH, Private Foundation, Heinz Endowments JDD Canadian Institutes of Health Research and Natural Sciences and Engineering Council of Canada DD NIH RRD NIH, USDA, Private Foundation WPd NIH, Zoetis LLC, Moderna, Coalition for Epidemics Preparedness Initiatives (CEPI) RED NIH NCE NIH, Howard Hughes Medical Institute ME NIH LWE None BAF NSF AFS NIH MLF NSF, USDA, Private Foundation LF Canadian Institutes of Health Research (CIHR) MBF NIH, Novavax, Astrazeneca, Pfizer, BARDA, Eli Lilly KF NIH, DOD, Bill and Melinda Gates Foundation MUG NIH MMG NIH, Private Foundation TG NIH DG NIH, Private Foundation AG-S NIH, DOD, Private Foundation Apg NIH Bag NIH, Howard Hughes Medical Institute Spg NIH, Private Foundation Fg NIH ALG None MHH NIH EH NIH NSH NIH, DOD, Private Foundation MTH NIH EEH NIH, Private Foundation Bgh NIH, NSF SMH NIH ECH UK Medical Research Council, UK Medical Research Council JMH NIH MJJ NIH, Via Nova Therapeutics Wtj NIH Rfk NIH Jpk NIH Smk NIH Fk German research foundation (DFG), European research council (erc) Dmk NIH Tl NIH, Moderna Ml NJ Ll Nih Ssl Nih Ral NIH ASL NIH, Burroughs Wellcome Fund, Flu Lab, Cdc Bl NIH, NSF, Private Foundation Dal NIH Sl NIH, Private donor’s fund, Ohio State. startup fund Rml NIH Cbl NIH Acl NIH, Private Foundation Mal NIH Jml NIH Bm NIH Gm NIH Mtm NIH, Dhs Amehle NIH, Private Foundation Wam NIH, Plant Sciences Institute, Iowa State University Im Nih Cm Nih Njm NIH Amoscona NIH Bcm NIH Km Nih Jcm NIH Eam NIH Mhn NIH Jan NIH Cjn None Jzn NIH Cmo None Ao NIH Wao NIH, Bill & Melinda Gates Foundation Dao NIH, Private Foundation Jhjo NIH Jsp NIH Crp NIH, Private Foundation Ap NIH, Private Foundation, Cdc Pep NIH Jkp NIH, Private Foundation Rkp NIH, DOD, Gilead Sciences, Enanta Pharmaceuticals Sjp None Jgp NIH Dp NIH, Private Foundation Mqm NIH, Private Foundation Rr NIH Cmr NIH, Private Foundation Rjr NIH Cjrh NIH Rs-G NIH Ms NIH Lms NIH, Cornell University, Private donors, Fast Grants Ss None Jws NIH Ssc NIH, Private Foundation Bls NIH Ts NIH, DOD Gs NIH, Private Foundation Vs NIH, Private
Foundation GAS NIH, USDA JGS NIH KRS NIH MLS start-up funds from the University of Florida KS Australian government, NHRMC WSI NIH MSS NIH TCS NIH, USDA AW TNIH VLT NIH, Private Foundation BT NIH, DOD, Private Foundation SAT NIH SMT NIH ZT NIH KVD NIH, Private Foundation MV None NAW NIH DW NIH MPW Medical Research Council, UK (MR/W025647/1); UKR1 mpox research consortium (BB/X011143/1) JBW NIH MDW NIH SKW NIH EAW NIH, Private Foundation SPJW NIH, Private Foundation, USAID, Vir Biotechnology BRGW Private Foundation CEW NIH, University of Michigan SSW NIH ADY NIH.

REFERENCES


15. Albery GF, Becker DJ, Brierley LC, Brook CE, Christofferson RC, Cohen LE, Kennedy MW, NIH, Private Foundation SPJW NIH, Private Foundation, USAID, Vir Biotechnology BRGW Private Foundation CEW NIH, University of Michigan SSW NIH ADY NIH.


