About this item:

56 Views | 38 Downloads

Author Notes:

Lee H. Harrison: lharriso@edc.pitt.edu

Conceived and designed the experiments: AW KS JM AC NM BL LH. Performed the experiments: AW KS. Analyzed the data: AW KS. Contributed reagents/materials/analysis tools: SZ SP MF KG RL AR WS JT SB. Wrote the paper: AW KS AC NM LH.

This publication made use of the Neisseria Multi Locus Sequence Typing website (http://pubmlst.org/neisseria/) developed by Keith Jolley and Man-Suen Chan and located at the University of Oxford. [33] The development of this site has been funded by the Wellcome Trust and European Union. We thank Martin Kulldorff for his methodological insight and technical assistance with the SaTScan software. SaTScan™ is a trademark of Martin Kulldorff. The SaTScan™ software was developed under the joint auspices of (i) Martin Kulldorff, (ii) the National Cancer Institute, and (iii) Farzad Mostashari of the New York City Department of Health and Mental Hygiene.

We thank the following Emerging Infections Program (EIP)/Active Bacterial Core surveillance (ABCs) site investigators and staff: Mirasol Apostol, Pam Daily, Joelle Nadle and Gretchen Rothrock (California); Steve Burnite (Colorado); Matt Carter and Michelle Wilson (Connecticut); Kathryn Arnold, Wendy Baughman, Lauren Lorentzson, Paul Malpiedi and Stephanie Thomas (Georgia); Terresa Carter and Rosemary Hollick (Maryland), Brenda Jewell, Christine Lees, Craig Morin and Jean Rainbow (Minnesota); Nancy Bennett, Jillian Karr, Glenda Smith and Nancy Spina (New York); Mark Schmidt and Ann Thomas (Oregon); Brenda Barnes (Tennessee); and Karrie-Ann Toews, Chris Van Beneden, Emily Weston and Carolyn Wright (CDC ABCs program). We also thank participating microbiology laboratory personnel and hospital infection preventionists in ABCs site hospitals and laboratories for identifying the N. meningitidis cases and submitting the bacterial isolates, Melina Lenser for performing molecular subtyping and Elizabeth Mitgang for her assistance with data management.

Subjects:

Keywords:

  • Science & Technology
  • Multidisciplinary Sciences
  • Science & Technology - Other Topics
  • INVASIVE MENINGOCOCCAL DISEASE
  • OUTBREAK DETECTION
  • SURVEILLANCE
  • INFECTION
  • RISK

Geotemporal Analysis of Neisseria meningitidis Clones in the United States: 2000-2005

Show all authors Show less authors

Tools:

Journal Title:

PLOS ONE

Volume:

Volume 8, Number 12

Publisher:

, Pages e82048-e82048

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: The detection of meningococcal outbreaks relies on serogrouping and epidemiologic definitions. Advances in molecular epidemiology have improved the ability to distinguish unique Neisseria meningitidis strains, enabling the classification of isolates into clones. Around 98% of meningococcal cases in the United States are believed to be sporadic. Methods: Meningococcal isolates from 9 Active Bacterial Core surveillance sites throughout the United States from 2000 through 2005 were classified according to serogroup, multilocus sequence typing, and outer membrane protein (porA, porB, and fetA ) genotyping. Clones were defined as isolates that were indistinguishable according to this characterization. Case data were aggregated to the census tract level and all non-singleton clones were assessed for non-random spatial and temporal clustering using retrospective space-time analyses with a discrete Poisson probability model. Results: Among 1,062 geocoded cases with available isolates, 438 unique clones were identified, 78 of which had ≥2 isolates. 702 cases were attributable to non-singleton clones, accounting for 66.0% of all geocoded cases. 32 statistically significant clusters comprised of 107 cases (10.1% of all geocoded cases) were identified. Clusters had the following attributes: included 2 to 11 cases; 1 day to 33 months duration; radius of 0 to 61.7 km; and attack rate of 0.7 to 57.8 cases per 100,000 population. Serogroups represented among the clusters were: B (n = 12 clusters, 45 cases), C (n = 11 clusters, 27 cases), and Y (n = 9 clusters, 35 cases); 20 clusters (62.5%) were caused by serogroups represented in meningococcal vaccines that are commercially available in the United States. Conclusions: Around 10% of meningococcal disease cases in the U.S. could be assigned to a geotemporal cluster. Molecular characterization of isolates, combined with geotemporal analysis, is a useful tool for understanding the spread of virulent meningococcal clones and patterns of transmission in populations.

Copyright information:

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.

This is an Open Access work distributed under the terms of the Creative Commons Universal : Public Domain Dedication License (https://creativecommons.org/publicdomain/zero/1.0/).
Export to EndNote