About this item:

122 Views | 32 Downloads

Author Notes:

Runtang Meng, Email: mengruntang@whu.edu.cn

RM and CY conceived the study. RM compiled the initial draft of the manuscript, assisted by JL, and undertook the final editing of the document. JL, ZW and DZ mainly undertook work of forward-backward procedure regarding the instruments. BL and YL supported in providing the data. CY and YH advised on statistical analysis. RM directed all facets of the study. All authors read and approved the final manuscript.

We are greatly indebted to Susan Levenstein M.D. from Aventino Medical Group in Italy and Chua Yeewen B.Sc. in Psychology from HELP University for their great help in the process of introducing this instrument to China. Special thanks to John Michael Linacre Ph.D. for his guidance and support in the Rating Scale Model (RSM) and IRT application in this paper. We would like to thank Assoc. Prof. Daniel Y.T. Fong Ph.D. (School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong) and Yuhang Zhu Ph.D. candidate (Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf) for comments and discussions on statistical analysis. Thanks also go to Yucong Ma (MTI, he studied at Southeast University-Monash University Joint Graduate School (Suzhou) at that time.) and Yongyong Xi (M.Med., Department of Environment and Occupational Hazard Control, Center for Disease Control and Prevention of Pudong New District) for their valuable assistance at forward-backward procedure. The authors express their appreciation to all respondents taking part in the present study and some friends for offering support in collecting data. Furthermore, they truly appreciate four anonymous reviewers and the academic editor who provided insightful comments and suggestions to improve the quality of the manuscript.

The author declares that he has no competing interests.

Subjects:

Research Funding:

This project was supported by the National Natural Science Foundation of China (Grant No. 81773552, 81273179), the National Key Research and Development Program of China (Grant No. 2018YFC1315302, 2017YFC1200502), Key Research Center for Humanities and Social Sciences in Hubei Province (Hubei University of Medicine) (Grant No. 2016YB06).

Additionally, the study was sponsored by Ningbo College of Health Sciences’ scientific research project (Grant No. 2018Z02), Ideological and Political Education Research Association of Ningbo’s Colleges and Universities research topic (Grant No. SGXSZ18012). The subsiding parties have no role in data collection, analysis, and interpretation of data, and in writing the manuscript.

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Health Care Sciences & Services
  • Health Policy & Services
  • Perceived stress
  • Instrument validation
  • Rasch analysis
  • Factor analysis
  • OF-FIT INDEXES
  • CULTURAL-ADAPTATION
  • ULCERATIVE-COLITIS
  • LIFE EVENTS
  • RELIABILITY
  • PSQ
  • DEPRESSION
  • ANXIETY
  • TRANSLATION
  • COEFFICIENT

The Chinese version of the Perceived Stress Questionnaire: development and validation amongst medical students and workers

Tools:

Journal Title:

HEALTH AND QUALITY OF LIFE OUTCOMES

Volume:

Volume 18, Number 1

Publisher:

, Pages 70-70

Type of Work:

Article | Final Publisher PDF

Abstract:

Background: A valid and efficient stress measure is important for clinical and community settings. The objectives of this study were to translate the English version of the Perceived Stress Questionnaire (PSQ) into Chinese and to assess the psychometric properties of the Chinese version of the PSQ (C-PSQ). The C-PSQ evaluates subjective experiences of stress instead of a specific and objective status. Methods: Forward translations and back translations were used to translate the PSQ into Chinese. We used the C-PSQ to survey 2798 medical students and workers at three study sites in China from 2015 to 2017. Applying Rasch analysis (RA) and factor analysis (FA), we examined the measurement properties of the C-PSQ. Data were analyzed using the Rasch model for item fit, local dependence (LD), differential item functioning (DIF), unidimensionality, separation and reliability, response forms and person-item map. We first optimized the item selection in the Chinese version to maximize its psychometric quality. Second, we used cross-validation, by exploratory factor analysis (EFA) and confirmatory factor analysis (CFA), to determine the best fitting model in comparison to the different variants. Measurement invariance (MI) was tested using multi-group CFA across subgroups (medical students vs. medical workers). We evaluated validity of the C-PSQ using the criterion instruments, such as the Chinese version of the Perceived Stress Scale (PSS-10), the Short Form-8 Health Survey (SF-8) and the Goldberg Anxiety and Depression Scale (GADS). Reliability was assessed using internal consistency (Cronbach's alpha, Guttman's lambda-2, and McDonald's omegas) and reproducibility (test-retest correlation and intraclass correlation coefficient, [ICC]). Results: Infit and/or outfit values indicated that all items fitted the Rasch model. Three item pairs presented local dependency (residual correlations > 0.30). Ten items showed DIF. Dimensionality instruction suggested that eight items should be deleted. One item showed low discrimination. Thirteen items from the original PSQ were retained in the C-PSQ adaptation (i.e. C-PSQ-13). We tested and verified four feasible models to perform EFA. Built on the EFA models, the optimal CFA model included two first-order factors (i.e. constraint and imbalance) and a second-order factor (i.e., perceived stress). The first-order model had acceptable goodness of fit (Normed Chi-square = 8.489, TLI = 0.957, CFI = 0.965, WRMR = 1.637, RMSEA [90% CI] = 0.078 [0.072, 0.084]). The second-order model showed identical model fit. Person separation index (PSI) and person reliability (PR) were 2.42 and 0.85, respectively. Response forms were adequate, item difficulty matched respondents' ability levels, and unidimensionality was found in the two factors. Multi-group CFA showed validity of the optimal model. Concurrent validity of the C-PSQ-13 was 0.777, - 0.595 and 0.584 (Spearman correlation, P < 0.001, the same hereinafter) for the Chinese version of the PSS-10, SF-8, and GADS. For reliability analyses, internal consistency of the C-PSQ-13 was 0.878 (Cronbach's alpha), 0.880 (Guttman's lambda-2), and 0.880 (McDonald's omegas); test-retest correlation and ICC were 0.782 and 0.805 in a 2-day interval, respectively. Conclusion: The C-PSQ-13 shows good metric characteristics for most indicators, which could contribute to stress research given its validity and economy. This study also contributes to the evidence based regarding between-group factorial structure analysis.

Copyright information:

© The Author(s) 2020

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/rdf).
Export to EndNote