Relationship of Chromosome Arm 10q Variants to Occurrence of Multiple Primary Melanoma in the Population-Based Genes, Environment, and Melanoma (GEM) Study

Jonathan A Miles, University of North Carolina
Irene Orlow, Memorial Sloan-Kettering Cancer Center
Peter A Kanetsky, Moffitt Cancer Center and Research Institute
Li Luo, University of New Mexico
Anne E Cust, University of Sydney
Bruce K Armstrong, University of Western Australia
Anne Kricker, University of Sydney
Hoda Anton-Culver, University of California Irvine
Stephehn B Gruber, University of Southern California
Richard P Gallagher, University of British Columbia

Only first 10 authors above; see publication for full author list.

Journal Title: JOURNAL OF INVESTIGATIVE DERMATOLOGY
Volume: Volume 139, Number 6
Publisher: ELSEVIER SCIENCE INC | 2019-06-01, Pages 1410-1412
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.jid.2018.11.030
Permanent URL: https://pid.emory.edu/ark:/25593/vzdtb

Final published version: http://dx.doi.org/10.1016/j.jid.2018.11.030

Copyright information:
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/rdf).

Accessed December 30, 2023 3:24 AM EST
Relationship of Chromosome Arm 10q Variants to Occurrence of Multiple Primary Melanoma in the Population-Based GEM Study

1Department of Dermatology, University of North Carolina, Chapel Hill, NC, USA
2Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, NY, USA
3Department of Cancer Epidemiology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
4Department of Internal Medicine, University of New Mexico Cancer Center, University of New Mexico, Albuquerque, NM, USA
5Sydney School of Public Health, The University of Sydney, Sydney, Australia
6Melanoma Institute Australia, The University of Sydney, North Sydney, Australia
7School of Public and Global Health, The University of Western Australia, Perth, Australia
8Department of Epidemiology, University of California, Irvine, California, USA
9USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
10British Columbia Cancer and Department of Dermatology and Skin Science, University of BC, Vancouver, British Columbia, Canada
11Piedmont Cancer Registry, Centre for Epidemiology and Prevention in Oncology in Piedmont, Turin, Italy
12Politecnico di Torino, Turin, Italy
13George Institute for Global Health, Nuffield Department of Obstetrics and Gynecology, University of Oxford, Oxford, UK
14Department of Epidemiology, Emory University, Atlanta, GA, USA
15Department of Pathology, Memorial Sloan-Kettering Cancer Center, NY, USA
16Department of Surgery, University of North Carolina, Chapel Hill, NC, USA
17Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.

Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed.
Keywords
Melanoma; population-based; genotype; dermatology; epidemiology; polymorphism

LETTER TO THE EDITOR

Using a genome-wide association (GWA) study of familial melanoma pedigrees (excluding CDKN2A+ pedigrees) and genetically matched controls, Teerlink et al. identified three single nucleotide polymorphisms (SNPs) in close proximity and high linkage disequilibrium (LD) in the 10q25.1 region (rs17119434, rs17119461, and rs17119490) associated with melanoma (Teerlink et al., 2012). These SNPs had low minor allele frequencies (MAFs) of 0.005 among controls utilized by Teerlink et al. (Teerlink et al., 2012), making detection of associations via traditional case-control methods challenging. We sought to confirm the relationship between these SNPs and melanoma utilizing the population-based Genes, Environment, and Melanoma (GEM) Study, designed to detect associations of rare genetic variants with melanoma (Begg et al., 2006).

The GEM Study is an international population-based case-control study of melanoma in which controls are those diagnosed with an invasive single primary melanoma (SPM) and cases are those diagnosed with multiple primary melanoma (MPM) ascertained between 1998 and 2003 in Australia, Canada, Italy, and the United States (Begg et al., 2006, Millikan et al., 2006). Per GEM protocol, in situ melanomas were considered to be incident melanomas if patients had prior invasive melanomas, in view of the careful surveillance that such patients would have received. The institutional review board at each participating recruitment site approved the study. Participants provided written informed consent. Patient characteristics were collected from phone interviews and self-completed questionnaires. DNA was collected from buccal brushes (Begg et al., 2005). SNPs were genotyped using the MassArray iPLEX platform (Agena Bioscience) with quality control measures described previously (Orlow et al., 2016). The tumor characteristics were obtained from the diagnostic pathology reports or centralized pathology review as previously described (Kricker et al., 2013, Taylor et al., 2015).

Logistic regression models estimated the odds ratios (ORs) and 95% confidence intervals (95% CIs) for each SNP adjusted for study features (age, sex, and study center) and an age by sex interaction. Participants with SPM who developed MPM during the ascertainment period (n=96) were included as both cases and controls. All tests were two-sided with P < 0.05 considered significant. All data were analyzed using Stata 15.

The demographics and tumor characteristics of the 2458 controls and 1205 cases in GEM are in Supplementary Table S1 online, excluding twelve participants not of European descent. The SNPs were in high LD with each other: D’= 0.92 for rs17119434 and rs17119461, 0.95 for rs17119434 and rs17119490, and 1.00 for rs17119461 and rs17119490. MAFs were between 0.012–0.013 for cases and 0.008–0.009 for controls, and the genotype frequency of homozygous minor allele carriage was zero for all three SNPs. The associations of these SNPs with MPM compared to SPM are in Table 1, and reported ORs reflect the comparison of heterozygous versus homozygous major allele genotypes.
SNPs rs17119461 and rs17119490 were significantly associated with MPM ($P < 0.05$), and rs17119434 approached significance ($P < 0.08$). rs17119461 had the strongest independent association with MPM ($OR = 1.77, 95\% CI = 1.06–2.97$).

To our knowledge, we provide the first confirmation of associations between SNPs in the 10q25.1 region and melanoma occurrence. The ORs (1.6–1.8) for MPM versus SPM were lower in GEM than the ORs (6.8–8.4) for familial melanoma cases versus genetically matched controls in Teerlink et al. As previously found for CDKN2A mutations, melanoma-risk variants in the general population can have a lower relative risk of melanoma than in a high-risk population (Begg et al., 2005). Teerlink et al. proposed a common ancestor to explain the high risk related to the 10q25.1 SNPs among their familial melanoma cases. A more plausible explanation, perhaps, is that the Teerlink et al. estimate is simply an overestimate, a common feature of many initial epidemiologic discoveries (Xiao and Boehnke, 2009). An advantage of the GEM study is that low frequency genetic variants are more likely to be observable in SPMs than normal controls (Begg et al., 2005). Further, the ORs found in the GEM study are more likely to represent the impact of these SNPs in the general population than the ORs found for multiple case families.

The 10q25.1 gene region lacks genes known to be associated with malignancy. A pseudogene, $YWHAZP5$, is the closest at 65kb away. $SORCS3$ and $SORCS1$ genes, both involved with vacuolar protein production, fall within 1Mb in either direction of the SNPs. Thus, the mechanism for these SNP associations with melanoma risk remains unknown. Notably, rs17119461 and rs17119490 were found to be nominally associated with pancreatic cancer, which shares genetic risk with familial melanoma (Wu et al., 2014).

Some melanoma genetic testing panels for patients meeting specific criteria include intermediate risk variants such as $MITF$ c.952 G>A that have a low MAF (~0.0015) (Delaunay et al., 2017). Thus, if validated in additional studies, rs17119461 may be a potential candidate for genetic testing in populations at high-risk of melanoma. Further, additional studies investigating the mechanism for the 10q25.1 SNP associations with melanoma risk are warranted.

GEM Study Group:

Coordinating Center, Memorial Sloan Kettering Cancer Center, New York, NY (USA): Marianne Berwick (PI, currently at the University of New Mexico, Albuquerque, NM), Colin Begg, Ph.D. (co-PI), Irene Orlov, Ph.D., M.S. (co-Investigator), Klaus J. Busam, M.D. (Dermatopathologist), Pampa Roy, Ph.D. (Senior Laboratory Technician), Siok Leong, M.S. (Research Assistant), Sergio Corrales-Guerrero (Senior Research Technician), Keimya Sadeghi, M.S. (Senior Laboratory Technician), Anne Reiner, M.S. (Biostatistician).

University of New Mexico, Albuquerque, NM: Marianne Berwick, M.P.H., Ph.D. (PI), Li Luo, Ph.D. (Biostatistician), Tawny W. Boyce, M.P.H. (Data Manager). Study Centers: The University of Sydney and The Cancer Council New South Wales, Sydney, Australia: Anne E. Cust, Ph.D. (PI), Bruce K. Armstrong M.D. Ph.D. (former PI), Anne Kricker Ph.D., (former co-PI); Menzies Institute for Medical Research University of Tasmania, Hobart, Australia: Alison Venn (current PI), Terence Dwyer (PI, currently at University of Oxford, Miles et al. J Invest Dermatol. Author manuscript; available in PMC 2020 June 01.
United Kingdom), Paul Tucker (Dermatopathologist); British Columbia Cancer Research Centre, Vancouver, Canada: Richard P. Gallagher, M.A. (PI), Agnes Lai, B.A., Research Coordinator, Cancer Care Ontario, Toronto, Canada: Loraine D. Marrett, Ph.D. (PI), Lynn From, M.D. (Dermatopathologist); CPO, Center for Cancer Prevention, Torino, Italy: Roberto Zanetti, M.D (PI), Stefano Rosso, M.D., M.Sc. (co-PI); University of California, Irvine, CA: Hoda Anton-Culver, Ph.D. (PI); University of Michigan, Ann Arbor, MI: University of Michigan, Ann Arbor, MI: Stephen B. Gruber, M.D., M.P.H., Ph.D. (PI, currently at University of Southern California, Los Angeles, CA), Shu-Chen Huang, M.S., M.B.A. (co-Investigator, joint at USC-University of Michigan); University of North Carolina, Chapel Hill, NC: Nancy E. Thomas, M.D., Ph.D. (PI), Kathleen Conway, PhD (co-Investigator), David W. Ollila, M.D. (co-Investigator), Pamela A. Groben, M.D. (Dermatopathologist), Sharon N. Edmiston, BA (Research Analyst), Honglin Hao (Laboratory Specialist), Eloise Parrish, MSPH (Laboratory Specialist), Jill S. Frank, MS (Research Assistant), David C. Gibbs, B.S. (Research Assistant, currently MD/PhD candidate at Emory University, Atlanta, GA); University of Pennsylvania, Philadelphia, PA: Timothy R. Rebbeck, Ph.D. (former PI), Peter A. Kanetsky, M.P.H., Ph.D. (PI, currently at H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL); UV data consultants: Julia Lee Taylor, Ph.D. and Sasha Madronich, Ph.D., National Centre for Atmospheric Research, Boulder, CO.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding: This work was supported by the National Cancer Institute (P01CA206980 to N.E.T and M.B., R01CA112243 to N.E.T, U01CA83180 and R01CA112524 to M.B., R01CA098438 to C.B.B, R03CA125829 and R03CA173806 to I.O., P30CA016086 (to Henry Shelton Earp), P30CA014089 (to S.B.G.), and P30CA008748 (to Craig B. Thompson); National Institute of Environmental Health Sciences (P30ES010126 to James A. Swenberg). AEC was supported by Career Development Fellowships from the NHMRC (1147843) and Cancer Institute NSW (15/CDF/1-14).

Abbreviations:

a minor allele
A major allele
Chrom chromosome
CI confidence interval
GEM Genes, Environment, and Melanoma
MAF minor allele frequency
IQR interquartile range
LD linkage disequilibrium

J Invest Dermatol. Author manuscript; available in PMC 2020 June 01.
OR
odds ratio
SNP
single nucleotide polymorphism

References

Table 1.

Associations of genotypes from the 10q25.1 chromosomal region with multiple primary melanoma (n = 1205) compared with single primary melanoma (n = 2458) patients in the GEM Study.\(^1\)

<table>
<thead>
<tr>
<th>SNP (hg19)</th>
<th>MAF</th>
<th>Controls</th>
<th>Cases</th>
<th>Single primary melanoma n = 2458</th>
<th>Multiple primary melanoma n = 1205</th>
<th>Aa versus AA OR (95% CI)(^2)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs17119434 (107,505,161)</td>
<td>A/G</td>
<td>0.009</td>
<td>0.013</td>
<td>73 (3.0)</td>
<td>2344 (95.4)</td>
<td>41 (1.7)</td>
<td>1.59 (0.94–2.67)</td>
</tr>
<tr>
<td>rs17119461 (107,516,352)</td>
<td>T/C</td>
<td>0.009</td>
<td>0.013</td>
<td>64 (2.0)</td>
<td>2353 (95.7)</td>
<td>41 (1.7)</td>
<td>1.77 (1.06–2.97)</td>
</tr>
<tr>
<td>rs17119490 (107,522,927)</td>
<td>G/A</td>
<td>0.008</td>
<td>0.012</td>
<td>84 (3.4)</td>
<td>2334 (95.0)</td>
<td>40 (1.6)</td>
<td>1.70 (1.00–2.88)</td>
</tr>
</tbody>
</table>

Abbreviations: A, major allele; a, minor allele; CI, confidence interval; GEM, Genes Environment and Melanoma; hg19, human genome reference version 19; MAF, minor allele frequency; OR, odds ratio; SNP, single nucleotide polymorphism. Bold type font indicates the SNP with the strongest association.

\(^1\)Limited to participants of European origin.

\(^2\)We used logistic regression models to estimate the ORs and 95% CIs adjusted for study features (age at diagnosis (continuous), sex, and study center) and an age by sex interaction. The genotype frequency of homozygous minor allele carriage was zero for all three SNPs, and the ORs reflect the comparison of heterozygous versus homozygous major allele genotypes.