Major Adverse Cardiovascular Events and the Timing and Dose of Corticosteroids in Immune Checkpoint Inhibitor-Associated Myocarditis

Lili Zhang, Massachusetts General Hospital
Daniel A Zlotoff, Massachusetts General Hospital
Magid Awadalla, Massachusetts General Hospital
Syed S Mahmood, New York-Presbyterian Hospital
Anju Nohria, Brigham and Women’s Hospital
Malek ZO Hassan, Massachusetts General Hospital
Franck Thuny, Aix-Marseille University
Leyre Zubiri, Massachusetts General Hospital
Carol L Chen, Weill Cornell Medical College
Ryan J Sullivan, Massachusetts General Hospital

Only first 10 authors above; see publication for full author list.

Journal Title: CIRCULATION
Volume: Volume 141, Number 24
Publisher: LIPPINCOTT WILLIAMS & WILKINS | 2020-06-16, Pages 2031-2034
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1161/CIRCULATIONAHA.119.044703
Permanent URL: https://pid.emory.edu/ark:/25593/vxt2g

Final published version: http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044703

Copyright information:
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/rdf).

Accessed July 15, 2023 3:55 AM EDT
Major Adverse Cardiovascular Events and the Timing and Dose of Corticosteroids in Immune Checkpoint Inhibitor-associated Myocarditis

Lili Zhang, MD, ScM1,2, Daniel A. Zlotoff, MD, PhD2, Magid Awadalla, MD1,2, Syed S. Mahmood, MD, MPH3, Anju Nohria, MD4, Malek Z.O. Hassan, MD1, Franck Thuny, MD, PhD5,6, Leyre Zubiri, MD, PhD7, Carol L. Chen, MD8, Ryan J. Sullivan, MD7, Raza M. Alvi, MD1, Adam Rokicki, BS1, Sean P. Murphy, MB, BCh, BAO2, Maeve Jones-O’Connor, MD2, Lucie M. Heinzelering, MD, MPH9, Ana Barac, MD, PhD10, Brian J. Forrestal, MD10, Eric H. Yang, MD11, Dipti Gupta, MD, MPH8, Michael C. Kirchberger, MD8, Sachin P. Shah, MD12, Muhammad A. Rizvi, MD13, Gagan Sahni, MD14, Anant Mandawat, MD15, Michael Mahmoudi, MD, PhD16, Sarju Ganatra, MD12, Stephane Ederhy, MD17, Eduardo Zatarain-Nicolas, MD, PhD18, John D. Groanke, MB, BCh, MPH4, Carlo G. Tocchetti, MD, PhD19, Alexander R. Lyon, MD, PhD20, Paaladinesh Thavendiranathan, MD21, Justine V. Cohen, DO7, Kerry L. Reynolds, MD7, Michael G. Fradley, MD22, Tomas G. Neilan, MD, MPH1,2

1Cardiovascular Imaging Research Center, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States;
2Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States;
3Cardiology Division, New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, New York, United States;
4Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States;
5Aix-Marseille University, Assistance Publique – Hôpitaux de Marseille, University Mediterranean Center of Cardio-Oncology (MEDI-CO center), Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, Nord Hospital, Center for CardioVascular and Nutrition research (C2VN), Marseille, France;
6Mediterranean group of cardio-oncology (gMEDICO), Marseille, France;
7Division of Oncology and Hematology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States;

Correspondence: Dr. Tomas G. Neilan, Cardio-Oncology Program, Cardiovascular Imaging Research Center, 165 Cambridge Street, Suite 400, Boston, MA 02114. Phone: 617-643-0239. Fax: 617-724-4152. tneilan@mgh.harvard.edu.

Disclosures: Dr. Mahmood has received consultancy fees from OMR Globus, Alpha Detail, and Opinion Research Team. Dr. Nohria has received research support from Amgen; and has been a consultant for Takeda Oncology. Dr. Heinzelering has received consultancy, advisory board, and speaker fees from MSD, BMS, Roche, Novartis, Amgen, and Curevac. Dr. Sullivan has been a consultant to Merck and Novartis. Dr. Groanke has received research support from Amgen. Dr. Neilan has received advisory fees from Parexel, BMS, H3-Biomedicine, Syros Pharmaceuticals, Aprea Therapeutics and Intrinsic Imaging. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Immune checkpoint inhibitors (ICI) are being increasingly applied to a broader range of cancers. Myocarditis is an uncommon, but potentially fulminant toxicity associated with ICI, with a case fatality rate of 30–50%.1,2 Corticosteroids are the first-line treatment; however, due to the limited data, guidelines vary significantly in terms of initial corticosteroids dose and treatment strategies.3,4

An international multicenter registry of ICI-associated myocarditis from 23 sites was established by retrospectively collecting consecutive patients with ICI-associated myocarditis. The diagnosis was made in one of two ways: 1) histopathology; or 2) clinically suspected myocarditis based on the European Society of Cardiology guidelines.5 The study was approved by each center’s institutional review board. The dose of corticosteroids was
converted to methylprednisolone equivalents. Patients were categorized into low (<60mg/day), intermediate (60–500mg/day) and high (501–1000mg/day) dose groups based on initial methylprednisolone-equivalent administered on the first day of treatment. The time of initiation was the time from admission to the first dose of corticosteroids and was separated into ≤24 hours, 24–72 hours and >72 hours groups. Major adverse cardiac events (MACE) were a composite of cardiovascular death, cardiac arrest, cardiogenic shock, and hemodynamically significant complete heart block requiring pacemaker. The beginning of follow-up was the time of index admission for myocarditis and the end of follow-up was on May 1st, 2019.

In total, 126 patients were treated with corticosteroids, with 65 diagnosed with histopathology and 61 using clinical criteria. Sixteen of the 126 patients used additional immunosuppressants, with similar characteristics as patients who received corticosteroids only. The median time from ICI administration to the admission was 51 days (interquartile range: 23, 120) days. Eighty-four patients (67%) presented with signs or symptoms typical for heart failure and 39 (31%) presented with arrhythmia. The initial corticosteroid was either methylprednisolone (96, 76%), prednisone (25, 20%), hydrocortisone (2, 2%) or dexamethasone (3, 2%). Twenty-one patients (16.7%) received low-dose corticosteroids, 55 (43.7%) received intermediate-dose, 50 (39.6%) received high-dose; groups were broadly similar in characteristics. Patients who received corticosteroids within 24 hours (43, 34.1%), between 24–72 (35, 27.8%) and after 72 hours (43, 38.1%) also appeared similar. Patients who received corticosteroids within 24 hours were less likely to have persistent troponin elevation at discharge (reduction of <50% of the peak troponin levels, 32.4%), compared with those treated between 24–72 hours (66.7%) and after 72 hours (41.4%, P=0.026). There was an inverse relationship between initial dose of corticosteroids and the occurrence of MACE (low-dose 61.9%, intermediate, 54.6%, high-dose 22.0%, P<0.001, Figure 1A, P=0.001). Compared with low-dose corticosteroids, high-dose was associated with a 73% lower risk of MACE independent of age, sex, lowest LVEF and time of initiation (HR=0.27, 95% CI 0.09, 0.84, P=0.024). Patients receiving corticosteroids within 24 hours of admission also had a lower rate of MACE (7.0%) compared with those between 24–72 hours (34.3%) and those >72 hours (85.1%, P<0.001, Figure 1B, P<0.001). Compared with after 72 hours, initiating corticosteroids within 24 hours of admission (HR=0.03, 95% CI 0.004, 0.23, P=0.001) and between 24–72 hours (HR=0.30, 95% CI 0.12, 0.73, P=0.008) was associated with a lower risk of MACE after adjusting for age, sex, lowest LVEF and initial corticosteroid dose. Patients were further categorized into time and dose combination groups, by dividing the cohort into ≤24 hours, 24–72 hours and >72 hours and high-dose (methylprednisolone 1000mg/day) and non-high dose corticosteroids (any dose <1000mg/day) groups. The time of initiation impacted MACE-free survival, whereby patients receiving corticosteroids within 24 hours regardless of dosage (blue curves) showed the best outcome, and patients receiving corticosteroids after 72 hours regardless of dosage (red curves) showed the worst outcome (Figure 1C).

These results raise the possibility that myocardial damage can be mitigated by early and intensive corticosteroids therapy. There appeared to be a graded reduction in the risk of MACE as the time of initiation became shorter and initial dose became higher. The initiation time of corticosteroids appeared to play a stronger role, such that using high-dose...
corticosteroids could not overcome the effect of corticosteroids given later. In contrast, non-
high dose corticosteroids administered ≤24 hours may lead to a better outcome compared
with patients who received high-dose later (24–72 or >72 hours).

This was a retrospective observational study; therefore, the association of corticosteroids
dosing and time is hypothesis-generating and future randomized controlled trials will be
needed to provide more definitive evidence and closely follow cancer outcomes.
Specifically, the effect of high-dose steroids on cancer outcomes with ICI’s is unclear; initial
data suggested that cancer outcomes were unchanged by high-dose corticosteroids, but more
recent data suggest that cancer-survival may be reduced. Therefore, there is likely a pressing
need for therapies beyond corticosteroids which will not affect cancer outcomes.

In conclusion, higher initial dose (i.e. intravenous methylprednisolone 1000mg/day) and
earlier initiation of corticosteroids in a retrospective study were associated with improved
cardiac outcomes with ICI-associated myocarditis.

Sources of Funding:
This work was supported by the Sarnoff Cardiovascular Research Foundation and the New York Academy of
Medicine’s Glorney-Raisbeck Award to Dr. S. S. Mahmood. Dr. R.J. Sullivan was supported, in part, through
the National Institutes of Health (NIH)/ National Cancer Institute (NCI) (RO1CA229851, UH2CA207355,
RO1CA193970). Dr. C.L. Chen, and Dr. D. Gupta were supported, in part, through the National Institutes of Health
(NIH)/ National Cancer Institute (NCI) P30CA08748. Dr. P. Thavendiranathan was supported, in part, through the
Canadian Institutes of Health Research New Investigator Award (FRN 147814). Dr. C.G. Tocchetti was supported
by a Ricerca di Ateneo/Federico II University grant. Dr. T.G. Neilan was supported, in part, through a kind gift
from A. Curt Greer and Pamela Kohlberg, NIH/NHLBI (IRO1HL130539, IRO1HL137562, and K24HL150238),
and NIH/ Harvard Center for AIDS Research (P30 AI060354).

REFERENCE
Damrongwatanasuk R, Chen CL, Gupta D, Kirchberger MC, Awadalla M, Hassan MZO, Moslehi
JJ, Shah SP, Ganatra S, Thavendiranathan P, Lawrence DP, Groatke JD and Neilan TG. Myocarditis
in Patients Treated With Immune Checkpoint Inhibitors. Journal of the American College of
Cardiology. 2018;71:1755–1764. [PubMed: 29567210]
2. Awadalla M, Mahmood SS, Groatke JD, Hassan MZO, Nohria A, Rokicki A, Murphy SP, Mercaldo
ND, Zhang L, Zlotoff DA, Reynolds KL, Aliw RM, Banerji D, Liu S, Heinerling LM, Jones-
O’Connor M, Bakar RB, Cohen JV, Kirchberger MC, Sullivan RJ, Gupta D, Mulligan CP, Shah SP,
Ganatra S, Rizvi MA, Sahni G, Tocchetti CG, Lawrence DP, Mahmoudi M, Devereux RB, Forrestal
Ederh S, Fradley MG and Neilan TG. Global Longitudinal Strain and Cardiac Events in Patients
With Immune Checkpoint Inhibitor-Related Myocarditis. Journal of the American College of
Cardiology. 2020;75:467–478. [PubMed: 32029128]
3. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS,
Gardner JM, Ginex P, Hallmeyer S, Holter Chakraborty J, Leigh NB, Mammen JS, McDermott DF,
Naing A, Nastouplil LJ, Phillips T, Porter LD, Puzanov I, Reichner CA, Santomasso BD, Seigel C,
Comprehensive Cancer N. Management of Immune-Related Adverse Events in Patients Treated
With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical
Lacouture ME, LeBoeuf NR, Lenihan D, Onofrei C, Shannon V, Sharma R, Silk AW, Skondra D,
associated with immune checkpoint inhibitors: consensus recommendations from the Society for


Circulation. Author manuscript; available in PMC 2021 June 16.
Figure 1.
Kaplan-Meier curves by initial corticosteroids dose (A), time of initiation (B) and by corticosteroids initial dose and time of initiation combination (C).
MACE: major adverse cardiovascular event.