About this item:

74 Views | 46 Downloads

Author Notes:

Lauren C. Balmert, 680 N. Lake Shore Drive, Suite 1400, Chicago IL, 60611-4402. Email: lauren.balmert@northwestern.edu

Subjects:

Research Funding:

Dr. Li’s research was supported in part by NIH grant 1R01DK117209. Dr. Peng’s research was supported in part by NIH grant R01HL-113548. Dr. Jeong’s research was supported in part by National Institute of Health (NIH) grant 5-U10-CA69651–11.

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Physical Sciences
  • Health Care Sciences & Services
  • Mathematical & Computational Biology
  • Medical Informatics
  • Statistics & Probability
  • Mathematics
  • Censoring
  • Donsker&#8217
  • s class
  • lost lifespan
  • perturbation
  • time-to-event data
  • MEDIAN REGRESSION
  • SURVIVAL ANALYSIS
  • LIFE
  • INFERENCE
  • MODELS
  • TRIAL
  • RISKS
  • LOST

Quantile regression on inactivity time

Tools:

Journal Title:

STATISTICAL METHODS IN MEDICAL RESEARCH

Volume:

Volume 30, Number 5

Publisher:

, Pages 1332-1346

Type of Work:

Article | Post-print: After Peer Review

Abstract:

The inactivity time, or lost lifespan specifically for mortality data, concerns time from occurrence of an event of interest to the current time point and has recently emerged as a new summary measure for cumulative information inherent in time-to-event data. This summary measure provides several benefits over the traditional methods, including more straightforward interpretation yet less sensitivity to heavy censoring. However, there exists no systematic modeling approach to inferring the quantile inactivity time in the literature. In this paper, we propose a semi-parametric regression method for the quantiles of the inactivity time distribution under right censoring. The consistency and asymptotic normality of the regression parameters are established. To avoid estimation of the probability density function of the inactivity time distribution under censoring, we propose a computationally efficient method for estimating the variance–covariance matrix of the regression coefficient estimates. Simulation results are presented to validate the finite sample properties of the proposed estimators and test statistics. The proposed method is illustrated with a real dataset from a clinical trial on breast cancer.
Export to EndNote