Interaction of race and pathology for neuroendocrine tumors: Epidemiology, natural history, or racial disparity?

Danielle K. DePalo, MD¹, Rachel M. Lee, MD, MSPH¹, Alexandra G. Lopez-Aguilar, MD, MS¹, Adriana C. Gamboa, MD¹, Flavio Rocha, MD², George Poultsides, MD³, Mary Dillhoff, MD⁴, Ryan C. Fields, MD⁵, Kamran Idrees, MD⁶, Hari Nathan, MD⁷, Daniel Abbott, MD⁸, Shishir K. Maithel, MD¹, Maria C. Russell, MD¹, United States Neuroendocrine Tumor Study Group

¹Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
²Department of Surgery, Virginia Mason Medical Center, Seattle, Washington
³Department of Surgery, Stanford University Medical Center, Stanford, California
⁴Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
⁵Department of Surgery, Washington University School of Medicine, St Louis, Missouri
⁶Division of Surgical Oncology, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
⁷Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
⁸Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin

Abstract

Background and Objectives: Although minority race has been associated with worse cancer outcomes, the interaction of race with pathologic variables and outcomes of patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs) is not known.

Methods: Patients from the US Neuroendocrine Study Group (2000–2016) undergoing curative-intent resection of GEP-NETs were included. Given few patients of other races, only Black and White patients were analyzed.

Results: A total of 1143 patients were included. Median age was 58 years, 49% were male, 14% Black, and 86% White. Black patients were more likely to be uninsured (7% vs 2%, P = .011), and to have symptomatic bleeding (13% vs 7%, P = .009), emergency surgery (7% vs 3%, P = .006), and positive lymph nodes (LN) (47% vs 36%, P = .021). However, Black patients had improved 5-
year recurrence-free survival (RFS) (90% vs 80%, \(P = .008 \)). Quality of care was comparable between races, seen by similar LN yield, R0 resections, postoperative complications, and need for reoperation/readmission (all \(P > .05 \)). While both races were more likely to have pancreas-NETs, Black patients had more small-bowel-NETs (22% vs 13%, \(P < .001 \)). LN positivity was prognostic for pancreas-NETs (5-year RFS 67% vs 83%, \(P = .001 \)) but not for small-bowel NETs.

Conclusions: Black patients with GEP-NETs had more adverse characteristics and higher LN positivity. Despite this, Black patients have improved RFS. This may be attributed to the epidemiologic differences in the primary site of GEP-NETs and variable prognostic value of LN-positive disease.

Keywords
lymph node positivity; neuroendocrine tumors; pancreas; racial disparities; small bowel

1 | INTRODUCTION

Although the majority are nonfunctional, neuroendocrine tumors are a heterogeneous group of cancers that can cause varied and nonspecific symptoms from the release of hormones.\(^1,2\) They are most commonly found in the gastrointestinal system, but can also be present in the pancreas, lungs, thyroid, ovaries, pituitary, and adrenal glands.\(^1\) Management includes surgical excision, which can be curative for localized disease, as well as surgical cytoreduction, radiotherapy, embolization, chemotherapy, and somatostatin analogues for patients with advanced disease.\(^3\) For the purpose of treatment and research, gastroenteropancreatic (GEP) neuroendocrine tumors are often grouped together.\(^4\) The most common locations of GEP neuroendocrine tumors are the small bowel and pancreas.\(^1,5-7\) While they both have similar management strategies, the prognosis of small bowel and pancreatic neuroendocrine tumors differs.\(^1,8,9\)

There is a large body of research regarding racial disparities in cancer outcomes and treatments, but a relatively small amount specific to neuroendocrine tumors. Available data have shown that minority race and lower socioeconomic status are associated with not only more advanced stage at diagnosis, but also with variations in treatment received and differences in outcome for neuroendocrine tumors.\(^1,5,10,11\)

Dasari et al\(^5\) found that Black patients with pancreatic neuroendocrine tumors had more advanced disease at diagnosis, limited utilization of surgery, and decreased disease-specific survival compared with patients of other races. Zhou et al\(^11\) likewise reported decreased overall and disease-specific survival for localized pancreatic neuroendocrine tumors in Black patients.\(^11\) In contrast, St Julien et al\(^10\) found that socioeconomic status and insurance coverage, but not race, were associated with variations in treatment and survival in patients with nonmetastatic pancreatic neuroendocrine tumors.

Most treatment and outcome disparities research for neuroendocrine tumors has been conducted by utilizing the Surveillance, Epidemiology, and End Results (SEER) database and National Cancer Database (NCDB), and largely focuses on pancreatic neuroendocrine tumors.\(^5,10,11\) Our aim was to investigate the interaction of race with clinicopathologic
variables, disease presentation, treatment patterns, and recurrence-free survival (RFS) in GEP neuroendocrine tumors in a large multi-institutional database.

2 | METHODS

The United States Neuroendocrine Tumor Study Group (US NET-SG) is comprised of eight geographically diverse academic institutions: Emory University, University of Michigan, The Ohio State University, Stanford University, Vanderbilt University, Virginia Mason, Washington University, and University of Wisconsin. Institutional Review Board (IRB) approval was obtained at each study site before data collection. All patients who underwent resection for a neuroendocrine tumor from 2000 to 2016 were evaluated. A review of electronic medical records was conducted and pertinent baseline intraoperative, pathologic, and postoperative outcome data were collected. Staging was based on American Joint Committee on Cancer (AJCC) 7th edition guidelines. Data regarding neoadjuvant and adjuvant therapy, disease recurrence, and survival were also recorded.

Patients who underwent curative-intent resection for primary GEP neuroendocrine tumors were included. GEP neuroendocrine tumors were defined as originating in the ampulla, appendix, duodenum, pancreas, small bowel, or stomach. Patients with other concurrent malignancy, metastatic disease, or 30-day perioperative mortality were excluded. Due to few patients of other races, only non-Hispanic Black and non-Hispanic White patients were included in this analysis.

2.1 | Statistical analysis

SPSS version 25.0 Armonk New York Software (IBM Inc) was used for all statistical analyses. Descriptive and comparative analyses were used for the entire study cohort. Univariate and multivariable analysis of laboratory values, pathologic findings, and clinical outcomes were performed. \(\chi^2 \) analysis was used to compare categorical variables and the Student t test or one-way analysis of variance was used for continuous variables, where indicated. Binary logistic and Cox regression analyses were used to compare preoperative variables with outcomes. Kaplan-Meier log rank tests were used for survival analysis. Statistical significance was predefined as \(P < .05 \).

3 | RESULTS

3.1 | Patient population and comparative data by race

Of 2182 patients in the database, 1143 met inclusion criteria. Median age was 58 years and 49% were male. Median follow-up was 36 months. Fourteen percent (n = 157) of patients were Black and 86% (n = 986) were White. Black patients were more likely to be female (63.2% vs 48.8%, \(P = .003 \)) and to be uninsured (6.5% vs 2.4%, \(P = .011 \)), to present with symptomatic gastrointestinal bleeding (12.7% vs 6.5%, \(P = .009 \)), and to require emergency surgery (7.0% vs 2.5%, \(P = .006 \)) (Table 1). Black patients were more likely to present with tumors originating in the small bowel (21.7% vs 12.8%, \(P < .001 \)), though pancreas neuroendocrine tumors were the most common tumor type for both races (Table 1). Black patients were also more likely to have adverse pathologic characteristics at presentation.
including perineural invasion (36.1% vs 25.2%, \(P = .046\)), positive lymph nodes (47.3% vs 35.6%, \(P = .021\)), and presence of multifocal tumors (13.0% vs 4.9%, \(P < .001\)).

The quality of surgical care received was similar between Black and White patients. There were no differences in lymph node yield at surgery (12 vs 12, \(P = .804\)), presence of positive margins after resection (12.2% vs 14.6%, \(P = .498\)), incidence of postoperative complications (39.7% vs 47.5%, \(P = .086\)), need for reoperation (4.1% vs 4.4%, \(P = 1.00\)), or readmission (19.1% vs 18.9%, \(P = 1.00\)) in Black compared with White patients.

3.2 Comparative data by primary tumor location

Patients with small bowel primaries were older (59.7 ± 12.3 vs 56.1 ± 13.9 years, \(P = .002\)) and more likely to be Black (21.3% vs 9.1%, \(P < .001\)) than patients with pancreas primary tumors (Table 2). Patients with small bowel primaries were also more likely to have adverse pathologic characteristics with increased rates of lymphovascular invasion (66.7% vs 28.5%, \(P < .001\)), perineural invasion (52.0% vs 22.2%, \(P < .001\)) and positive lymph nodes (82.1% vs 24.5%, \(P < .001\)). Patients with pancreatic primaries were more likely to have postoperative complications (54.9% vs 36.5%, \(P < .001\)), in particular anastomotic leak (24.5% vs 2.1%, \(P < .001\)). The rates of reoperation, readmission, and recurrence between the two sites were similar.

3.3 Recurrence-free survival

When considering the entire cohort, Black patients had improved 5-year RFS compared with White patients (89.9% vs 79.5%, \(P = .008\)) (Figure 1). When examining small bowel neuroendocrine tumor RFS by race and stratifying by lymph node status, there was no significant difference in 5-year RFS in Black and White races (lymph node negative \(P = .540\), lymph node positive \(P = .388\); Figure 2A). However, for pancreatic neuroendocrine tumors, there was a significant difference in 5-year RFS in lymph node negative tumors by Black and White races (100% vs 81.7%; \(P = .013\); Figure 2B), while 5-year RFS remained comparable by race in lymph node–positive disease (68.6% vs 67.0%; \(P = .960\); Figure 2B). When assessing the prognostic value of lymph node–positive disease, regardless of race, on Cox regression analysis, lymph node positivity was not predictive of RFS in small bowel neuroendocrine tumors (Table 3a). Lymph node positivity, however, was associated with decreased RFS in pancreatic neuroendocrine tumors (HR, 1.99; 95% CI, 1.30–3.06; \(P = .002\); Table 3b).

4 DISCUSSION

Black patients undergoing surgery for curative intent resection of GEP-NETs presented with more advanced pathologic characteristics compared with White patients. Although there may be delays in Black patients seeking or reaching care, as evidenced by these worse pathologic variables at presentation, they received similar quality of care compared with White patients at these tertiary referral centers that comprise the US NET-SG. Despite having more advanced disease at presentation, Black patients had improved RFS compared with White patients, suggesting that similar quality of surgical care is being offered to both races.
This is contradictory to much of the available literature regarding the impact of race on outcomes.5,11,12 However, it is important to note that our study population is limited to patients receiving curative-intent surgical care at select academic high-volume institutions. This may in part account for racial differences in severity of disease at presentation since care was still accessed early enough to be amenable for curative-intent resection. Given our study cohort of only patients who underwent curative-intent resection, we cannot assess any potential racial disparities in the utilization of high-volume academic centers.12

Others in the literature that have primarily focused on race associated outcomes of pancreatic neuroendocrine tumors using SEER and NCDB data. Zhou et al11 found that Black patients have a worse overall survival and pancreatic neuroendocrine tumor disease-specific survival, which was attributed primarily to advanced stage disease at diagnosis and decreased access to surgery. More specifically, they found that there was no difference in these outcomes for Black and White patients who did undergo surgery, which corroborates our findings.11 In another study, Fraenkel et al13 reported that the incidence of small bowel neuroendocrine tumors was higher in Black patients compared with White patients, similar to our findings, although they found no difference in the incidence of pancreatic neuroendocrine tumors.

In this study, the improved RFS observed in Black patients may be attributed to the epidemiologic differences in the site of presentation of gastroenteropancreatic neuroendocrine tumors. Specifically, Black patients presented with a higher rate of small bowel neuroendocrine tumors than White patients. Small bowel neuroendocrine tumors generally have a better prognosis than pancreatic neuroendocrine tumors, which was present at higher rates in White patients in this study.9 While there was not a statistically significant difference in 5-year RFS seen in this cohort, this may be due to the relatively small sample size and number of events. The impact of lymph node positivity in neuroendocrine tumors also may not be uniform across all disease sites. Our group recently reported that there is limited prognostic significance of lymph node positivity in small bowel neuroendocrine tumors if fewer than 4 lymph nodes are positive.14 It is important to note that the average number of positive lymph nodes in this study was 3.4 and 3.8 in small bowel neuroendocrine tumors for Black and White race patients, respectively. Thus, the improved RFS observed in Black patients in the entire GEP cohort, despite a higher rate of lymph node–positive disease, may be reflective of the fact that the prevalence of small bowel neuroendocrine tumors seems to be higher in Black compared with White patients, where there is limited prognostic value of lymph node–positive disease. Finally, the improved survival in node negative Black patients with pancreatic neuroendocrine tumors is a relatively novel finding and will require more investigation as these numbers were small.

The generalizability of the results of this study are limited by the population, which exclusively comes from large, metropolitan, academic institutions. We were also only able to examine Black and White races due to the small sample size of other races in the database. The small sample size of some site-specific analyses may have limited the power of the analysis. As with any retrospective study, there are concerns for selection bias and difficulty capturing complete RFS data. Regardless, to our knowledge this represents the largest study evaluating the interaction of race with pathologic and oncologic outcomes of
gastroenteropancreatic neuroendocrine tumors at centers that manage a high volume of this rare disease.

5 | CONCLUSION

In contrast to published literature, in this multi-institutional study, Black patients did not have inferior outcomes from neuroendocrine tumors, and in fact had improved RFS compared with White patients, despite presenting with more adverse pathologic characteristics. This improved RFS seen in Black patients may be attributed to the epidemiologic differences in the site of presentation of GEP neuroendocrine tumors and the variable prognostic value of lymph node-positive disease.

GROUP/CONSORTIUM MEMBERS

Zaheer Kanji MD, Eleftherios Makris MD, Eliza Beal MD, Roheena Panni MD, Paula Marincola Smith MD, Megan Beems MD, Victoria Rendell MD

1. Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia
2. Department of Surgery, Virginia Mason Medical Center, Seattle, Washington
3. Department of Surgery, Stanford University Medical Center, Stanford, California
4. Division of Surgical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
5. Department of Surgery, Washington University School of Medicine, St Louis, Missouri
6. Division of Surgical Oncology, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
7. Division of Hepatopancreatobiliary and Advanced Gastrointestinal Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
8. Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin

REFERENCES

FIGURE 1.
Recurrence-free survival by race
FIGURE 2.
A, Small bowel NET lymph node positivity recurrence-free survival by race. B, Pancreatic NET lymph node positivity recurrence-free survival by race. NET, neuroendocrine tumor.
TABLE 1

Baseline demographics and presentation by race

<table>
<thead>
<tr>
<th>Variable</th>
<th>White (n = 986)</th>
<th>Black (n = 157)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y), mean ± SD</td>
<td>56.7 ± 13.7</td>
<td>55.0 ± 14.1</td>
<td>.159</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
<td>.003</td>
</tr>
<tr>
<td>Male</td>
<td>466 (51.2)</td>
<td>49 (36.8)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>445 (48.8)</td>
<td>84 (63.2)</td>
<td></td>
</tr>
<tr>
<td>Health insurance</td>
<td></td>
<td></td>
<td>.011</td>
</tr>
<tr>
<td>Insured</td>
<td>950 (97.6)</td>
<td>145 (93.5)</td>
<td></td>
</tr>
<tr>
<td>Uninsured</td>
<td>23 (2.4)</td>
<td>10 (6.5)</td>
<td></td>
</tr>
<tr>
<td>Presented with GI bleeding event</td>
<td>64 (6.5)</td>
<td>20 (12.7)</td>
<td>.009</td>
</tr>
<tr>
<td>Required emergency surgery</td>
<td>25 (2.5)</td>
<td>11 (7.0)</td>
<td>.006</td>
</tr>
<tr>
<td>Unknown primary at time of surgery</td>
<td>38 (3.9)</td>
<td>16 (10.2)</td>
<td>.001</td>
</tr>
<tr>
<td>NET found incidentally</td>
<td>64 (6.5)</td>
<td>22 (14.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Multiple primary tumors</td>
<td>40 (4.1)</td>
<td>1 (0.6)</td>
<td>.056</td>
</tr>
<tr>
<td>Location of tumor</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Pancreas</td>
<td>666 (67.5)</td>
<td>67 (42.7)</td>
<td></td>
</tr>
<tr>
<td>Small bowel</td>
<td>126 (12.8)</td>
<td>34 (21.7)</td>
<td></td>
</tr>
<tr>
<td>Other GEP</td>
<td>194 (19.7)</td>
<td>56 (35.6)</td>
<td></td>
</tr>
<tr>
<td>Positive margin after resection</td>
<td>142 (14.6)</td>
<td>19 (12.2)</td>
<td>.498</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>244 (33.8)</td>
<td>38 (36.9)</td>
<td>.617</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>162 (25.5)</td>
<td>30 (36.1)</td>
<td>.046</td>
</tr>
<tr>
<td>Multifocal tumor</td>
<td>42 (4.9)</td>
<td>20 (13.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Lymph nodes retrieved (yes)</td>
<td>271 (35.6)</td>
<td>52 (47.3)</td>
<td>.021</td>
</tr>
<tr>
<td>Number LN retrieved, mean ± SD</td>
<td>11.7 ± 9.4</td>
<td>12.0 ± 8.5</td>
<td>.804</td>
</tr>
<tr>
<td>Positive lymph nodes (yes)</td>
<td>271 (35.6)</td>
<td>52 (47.3)</td>
<td>.21</td>
</tr>
<tr>
<td>Number LN positive, mean ± SD</td>
<td>1.7 ± 2.4</td>
<td>1.5 ± 2.6</td>
<td>.570</td>
</tr>
<tr>
<td>Any postoperative complication</td>
<td>467 (47.5)</td>
<td>62 (39.7)</td>
<td>.087</td>
</tr>
<tr>
<td>Multiple postoperative complications</td>
<td>189 (40.6)</td>
<td>41 (66.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Anastomotic leak</td>
<td>172 (18.6)</td>
<td>11 (7.5)</td>
<td>.001</td>
</tr>
<tr>
<td>Reoperation</td>
<td>41 (4.4)</td>
<td>6 (4.1)</td>
<td>1.000</td>
</tr>
<tr>
<td>Readmission</td>
<td>185 (18.9)</td>
<td>30 (19.1)</td>
<td>1.000</td>
</tr>
<tr>
<td>Variable</td>
<td>White (n = 986)</td>
<td>Black (n = 157)</td>
<td>P value</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Recurrence</td>
<td>143 (15.0)</td>
<td>12 (7.6)</td>
<td>.019</td>
</tr>
</tbody>
</table>

Abbreviations: GI, gastrointestinal, NET, neuroendocrine; SD, standard deviation.

Bold values denote $P < .05$.
TABLE 2

Comparative data by primary tumor location

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pancreas (n = 733)</th>
<th>Small bowel (n = 160)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>56.1 ± 13.9</td>
<td>59.7 ± 12.3</td>
<td>.002</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>.953</td>
</tr>
<tr>
<td>Male</td>
<td>371 (50.6)</td>
<td>82 (51.3)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>362 (49.4)</td>
<td>78 (48.8)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>White</td>
<td>666 (90.9)</td>
<td>126 (78.8)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>67 (9.1)</td>
<td>34 (21.3)</td>
<td></td>
</tr>
<tr>
<td>Positive margin after resection</td>
<td>110 (15.1)</td>
<td>14 (8.9)</td>
<td>.053</td>
</tr>
<tr>
<td>Lymphovascular invasion</td>
<td>171 (28.5)</td>
<td>78 (66.7)</td>
<td><.001</td>
</tr>
<tr>
<td>Perineural invasion</td>
<td>121 (22.2)</td>
<td>52 (52.0)</td>
<td><.001</td>
</tr>
<tr>
<td>Lymph nodes retrieved (yes)</td>
<td>615 (84.4)</td>
<td>142 (89.9)</td>
<td>.099</td>
</tr>
<tr>
<td>Positive lymph nodes</td>
<td>151 (24.5)</td>
<td>119 (82.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Any postoperative complication</td>
<td>402 (54.9)</td>
<td>58 (36.5)</td>
<td><.001</td>
</tr>
<tr>
<td>Multiple postoperative complications</td>
<td>169 (42.1)</td>
<td>22 (37.9)</td>
<td>.641</td>
</tr>
<tr>
<td>Anastomotic leak</td>
<td>171 (24.5)</td>
<td>3 (2.1)</td>
<td><.001</td>
</tr>
<tr>
<td>Reoperation</td>
<td>25 (3.6)</td>
<td>10 (6.9)</td>
<td>.111</td>
</tr>
<tr>
<td>Readmission</td>
<td>169 (23.1)</td>
<td>27 (17.1)</td>
<td>.121</td>
</tr>
<tr>
<td>Recurrence</td>
<td>94 (13.0)</td>
<td>26 (17.7)</td>
<td>.168</td>
</tr>
<tr>
<td>5-y Recurrence-free survival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entire cohort</td>
<td>81.1%</td>
<td>81.9%</td>
<td>.890</td>
</tr>
<tr>
<td>White patients only</td>
<td>81.1%</td>
<td>79.2%</td>
<td>.341</td>
</tr>
<tr>
<td>Black patients only</td>
<td>81.1%</td>
<td>91.1%</td>
<td>.160</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.
TABLE 3a

Cox regression for recurrence-free survival: small bowel

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>P value</th>
<th>Multivariable analysis</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Reference</td>
<td>.135</td>
<td>Reference</td>
<td>.320</td>
</tr>
<tr>
<td>Black</td>
<td>0.397 (0.118–1.335)</td>
<td></td>
<td>0.539 (0.159–1.821)</td>
<td></td>
</tr>
<tr>
<td>Lymph node positivity</td>
<td>5.040 (0.678–37.48)</td>
<td>.114</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3b

Cox regression for recurrence-free survival: pancreas

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate analysis</th>
<th>P value</th>
<th>Multivariable analysis</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Reference</td>
<td>.074</td>
<td>Reference</td>
<td>.103</td>
</tr>
<tr>
<td>Black</td>
<td>0.400 (0.146–1.09)</td>
<td></td>
<td>0.433 (0.159–1.18)</td>
<td></td>
</tr>
<tr>
<td>Lymph node positivity</td>
<td>1.97 (1.28–3.03)</td>
<td>.002</td>
<td>1.99 (1.30–3.06)</td>
<td>.002</td>
</tr>
</tbody>
</table>