About this item:

73 Views | 38 Downloads

Author Notes:

denis.tsygankov@bme.gatech.edu

William Pilcher, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

Xingyu Yang, Data curation, Formal analysis

Anastasia Zhurikhina and Olga Chernaya, Data curation

Yinghan Xu, Software

Peng Qiu, Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Resources, Supervision, Validation

Denis Tsygankov, Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, Writing – review & editing

The authors have declared that no competing interests exist.

We would like to acknowledge the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for the use of their shared equipment, services and expertise.

Subjects:

Research Funding:

This work was supported by the National Science Foundation grant CCF-1552784 and the ISAC Marylou Ingram Scholarship to P.Q. and by the U.S. Army Research Office (ARO) grant W911NF-17-1-0395 to D.T. and by funds from the Marcus Foundation, The Georgia Research Alliance, and the Georgia Tech Foundation through their support of the Marcus Center for Therapeutic Cell Characterization and Manufacturing (MC3M) at Georgia Tech. In all cases, the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Keywords:

  • Science & Technology
  • Life Sciences & Biomedicine
  • Biochemical Research Methods
  • Mathematical & Computational Biology
  • Biochemistry & Molecular Biology
  • VORONOI DIAGRAMS
  • ANGIOGENESIS
  • QUANTIFICATION

Shape-to-graph mapping method for efficient characterization and classification of complex geometries in biological images

Journal Title:

PLOS COMPUTATIONAL BIOLOGY

Volume:

Volume 16, Number 9

Publisher:

, Pages e1007758-e1007758

Type of Work:

Article | Final Publisher PDF

Abstract:

With the ever-increasing quality and quantity of imaging data in biomedical research comes the demand for computational methodologies that enable efficient and reliable automated extraction of the quantitative information contained within these images. One of the challenges in providing such methodology is the need for tailoring algorithms to the specifics of the data, limiting their areas of application. Here we present a broadly applicable approach to quantification and classification of complex shapes and patterns in biological or other multi-component formations. This approach integrates the mapping of all shape boundaries within an image onto a global information-rich graph and machine learning on the multidimensional measures of the graph. We demonstrated the power of this method by (1) extracting subtle structural differences from visually indistinguishable images in our phenotype rescue experiments using the endothelial tube formations assay, (2) training the algorithm to identify biophysical parameters underlying the formation of different multicellular networks in our simulation model of collective cell behavior, and (3) analyzing the response of U2OS cell cultures to a broad array of small molecule perturbations.

Copyright information:

© 2020 Pilcher et al

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
Export to EndNote