Percutaneous Closure of Paravalvular Leak from a Rocking Mitral Valve in a 74-Year-Old Man at High Surgical Risk

Frank Corrigan III, Emory University
Jose Miguel Iturbe, Emory University
Stamatios Lerakis, Emory University
Norihiko Kamioka, Emory University
Vasilis Babaliaros, Emory University
Stephen Clements Jr., Emory University

Journal Title: Texas Heart Institute Journal
Volume: Volume 47, Number 2
Publisher: Texas Heart Institute | 2020-04-01, Pages 160-162
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.14503/THIJ-18-6626
Permanent URL: https://pid.emory.edu/ark:/25593/vp3m1

Final published version: http://dx.doi.org/10.14503/THIJ-18-6626

Copyright information:
© 2020 by the Texas Heart® Institute, Houston.

Accessed June 20, 2022 10:13 PM EDT
Percutaneous Closure of Paravalvular Leak from a Rocking Mitral Valve in a 74-Year-Old Man at High Surgical Risk

Dehiscence of a prosthetic heart valve or excessive rocking during the cardiac cycle is thought to preclude percutaneous paravalvular leak closure. However, surgical repair of paravalvular leak is associated with recurrent dehiscence and poor outcomes. We present the case of a symptomatic 74-year-old man in whom we performed percutaneous anchoring, involving multiple plugs and multimodal imaging, to stabilize a rocking mitral valve and close a substantial paravalvular leak caused by dehiscence. To our knowledge, using this technique to correct both conditions is novel. (Tex Heart Inst J 2020;47(2):160-2)

Paravalvular regurgitation around a prosthetic heart valve, called paravalvular leak (PVL), is an important cause of morbidity after surgical valve replacement. This complication occurs in nearly 3% of surgical mitral valve replacements, most often in cases involving endocarditis. Moderate-to-severe PVL after surgical or transcatheter valve replacement can raise mortality rates. Percutaneous PVL closure, which is less invasive than surgical repair, has resulted in less morbidity and similar outcomes. Preprocedural evaluation can reveal active endocarditis, excessive rocking of the valve during the cardiac cycle, and concomitant valvular regurgitation, any of which may preclude percutaneous approaches. Valvular dehiscence and excessive rocking are usually associated with active or prior endocarditis or other systemic inflammatory disorders. Inflammation makes the surrounding tissue friable, so dehiscence can recur after surgical valve replacement. We present the case of an elderly man in whom we used an anchoring technique for percutaneous PVL closure in the presence of valvular instability.

Case Report

In February 2017, a 74-year-old man presented with worsening New York Heart Association (NYHA) functional class III fatigue and exertional dyspnea, along with new atrial fibrillation refractory to cardioversion. His medical history included ischemic cardiomyopathy, 3-vessel coronary artery bypass grafting, and implantation of a 31-mm Epic™ mitral bioprosthesis (St. Jude Medical, part of Abbott). More than one year previously, he had undergone reoperation for mitral endocarditis, for which he had completed a course of antibiotic therapy. At the current presentation, he had no markers of inflammation or infection. A transesophageal echocardiogram (TEE) showed severe PVL anterolaterally and dehiscence of the sewing ring, which caused the valve to rock during the cardiac cycle (Fig. 1). Cardiac computed tomograms (CT) showed a 23 × 11-mm area of valvular dehiscence anterolaterally, enabling direct communication between the left atrium and left ventricle (Fig. 2).

The patient's previous mitral operations and evidence of friable tissue placed him at high risk for surgical repair, so we planned percutaneous PVL closure. We used cardiac CT to estimate the biplanar angiographic views that would facilitate the procedure. The patient was placed under general anesthesia. His mean left atrial pressure was 28 mmHg, and his V-wave pressure was 55 mmHg. After gaining access through the right femoral vein, we performed a transseptal puncture with use of a medium-curve Agilis™ NxT Steerable Introducer (St. Jude Medical) and then electrocautery of the puncture with an Astato XS 20 Peripheral Guide Wire (Asahi Intecc USA, Inc.). To stabilize the mitral prosthesis, we placed a 30-mm Atrieve™ Vascular Snare...
Percutaneous Closure of Mitral Paravalvular Leak

We successfully closed a severe PVL around a rocking mitral prosthesis in an elderly patient who had a...
distant history of endocarditis and 2 previous mitral valve operations. Surgical closure may result in recurrent PVL, especially when a dehisced valve is unstable. 7 We used cardiac CT to help locate the PVL and to help determine the appropriate plug size before intervention. Using cardiac CT also enabled us to plan which angiographic views to use during the procedure. Three-dimensional TEE periprocedural guidance confirmed our positioning and the adequacy of closure. The patient’s surgical history made percutaneous treatment his best option. Because preprocedural images had shown an anterolateral area of dehiscence involving less than 90° of the circumference of the mitral prosthesis, we used an oversized vascular plug to stabilize the rocking valve.

To our knowledge, this is the first application of this technique for both of the reported conditions. Our thorough reliance on multimodal imaging for preprocedural planning and intraprocedural guidance enabled PVL closure in the presence of valvular dehiscence and friable surrounding tissue in this elderly patient who was at high surgical risk.

Acknowledgments

We thank Sharon Howell, RDCS, and Patricia Keegan, DNP, for their assistance in procedural preparation and care of the patient.

References