Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban

Oana M. Dumitrascu, Cedars Sinai Medical Center
Oksana Volod, Cedars Sinai Medical Center
Swaraj Bose, Cedars Sinai Medical Center
Yao Wang, Cedars Sinai Medical Center
Valerie Biousse, Emory University
Patrick D. Lyden, Cedars Sinai Medical Center

Journal Title: Journal of Stroke & Cerebrovascular Diseases
Volume: Volume 29, Number 8
Publisher: Elsevier Science Ltd. | 2020-08-01, Pages 104982-104982
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1016/j.jstrokecerebrovasdis.2020.104982
Permanent URL: https://pid.emory.edu/ark:/25593/vnfkv

Final published version:
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104982

Copyright information:
© 2020 Elsevier Inc. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed June 2, 2022 4:37 PM EDT
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Acute ophthalmic artery occlusion in a COVID-19 patient on apixaban

Oana M. Dumitrascu, MD, MSc,a Oksana Volod, MD,b Swaraj Bose, MD,c Yao Wang, MD,c Valérie Bioussé, MD,d,e,f and Patrick D. Lyden, MDa

We report a case of ophthalmic artery occlusion (OAO) in a young patient with COVID-19 infection that was on therapeutic anticoagulation with apixaban for deep venous thrombosis (DVT).

A 48-year-old man with obesity was hospitalized with a severe form of COVID-19 infection, complicated with acute respiratory failure, septic shock, dilated cardiomyopathy and fungemia. Despite treatment with prophylactic enoxaparin (initial D-Dimer 1.14 µg/ml FEU (normal < 0.05 µg/ml FEU), D-Dimer increased to above 20 µg/ml FEU and patient continued to spike high fevers. This prompted further investigations and upper and lower extremities DVTs were confirmed and managed with enoxaparin 1 mg/kg twice daily. D-dimer level decreased to 4.98 µg/ml FEU while on therapeutic anticoagulation. Three weeks later pending hospital discharge, the anticoagulation was switched to oral apixaban 10 mg twice daily. Patient developed acute severe right eye visual loss of no light perception and was diagnosed with incomplete OAO. D-Dimer was elevated at 2.13 µg/ml FEU. Stroke etiological work-up found no embolic sources, resolution of the dilated cardiomyopathy and negative antiphospholipid antibodies. Treatment was changed to enoxaparin and no thrombotic events were encountered to date. Ocular vascular complications have not yet been reported in COVID-19. Controversy exists on the best management algorithm for the hypercoagulable state associated to COVID-19. Either direct oral anticoagulants or low-molecular-weight-heparin are considered appropriate at discharge for patients with venous thromboembolism. The optimum regimen for ischemic stroke prevention and the significance of D-Dimer for anticoagulation monitoring in COVID-19 remain unclear.

Keywords: Ophthalmic artery occlusion—COVID-19—Stroke—Anticoagulation

© 2020 Elsevier Inc. All rights reserved.
two days later for acute hypoxemic respiratory failure. Baseline D-Dimer was 1.14 μg/ml FEU (normal ≤ 0.05 μg/ml FEU). He was treated with hydroxychloroquine, tocilizumab and prophylactic enoxaparin 40 mg subcutaneous injections daily. Patient’s hospital stay was complicated with septic shock treated with broad-spectrum antibiotics, dilated cardiomyopathy, acute renal injury and Candida albicans fungemia. Two weeks post-intubation on a surveillance check, D-Dimer value had increased to above 20 μg/ml FEU. This markedly elevated value and persistent fevers despite antimicrobials prompted venous duplex ultrasound that confirmed bilateral upper and lower extremities DVTs, and enoxaparin 150 mg (1 mg/kg) twice daily was started. Two days after the therapeutic dose of enoxaparin was started, D-Dimer value had decreased, however remained mildly elevated at 4.98 μg/ml FEU. Three weeks later pending discharge, decision was made to transition to oral apixaban 10 mg twice daily. Thirty-seven hours after the last dose of enoxaparin and twenty-four hours after apixaban was started, the patient developed sudden-onset painless right eye vision loss. Immediate ophthalmological examination showed visual acuity of no light perception in the right eye and 20/20 in the left eye. Anterior segment and motility examination were normal, and there was a right dense relative afferent pupillary defect. Dilated fundoscopic examination showed mild optic disc edema, retinal whitening consistent with retinal edema, and mildly attenuated retinal vessels. No peripheral retinal hemorrhages or emboli were noted. 96 h later, the fundoscopic examination showed more diffuse retinal and optic disc edema, with an intact area of retinal perfusion in the infero-temporal peripapillary region, retinal exudates, severely attenuated retinal vessels, and absent macular cherry-red spot, confirming a diagnosis of incomplete OAO. The fundoscopic examination of the left eye was normal.

Laboratory work-up after the onset of visual symptoms revealed mildly elevated D-Dimer (2.13 μg/ml FEU), fibrinogen (608 mg/dl; normal range 200–400 mg/dl), prothrombin time (16.8 s; normal range 11.9–14.4 s), international normalized ratio (1.4; reference range 0.8–1.3), partial thromboplastin time (37 s; normal range 22–37 s), pro-calcitonin (0.13 ng/ml; normal ≤ 0.07 ng/ml), ferritin (718.73 mg/ml; normal range 21.81–274.66 mg/ml), mild lymphopenia (0.86 × 1000 μl/l), bandemia (12 × 1000 μl/l), thrombocytosis (511 × 1000 μl/l) and normal C-reactive protein (4.3 mg/l; normal ≤ 5 mg/l). Anticardiolipin and beta-2 glycoprotein IgA, IgM and IgG titers were not elevated. Lupus anticoagulant was not detected. MRI of the brain and orbits and CT angiogram head and neck were normal. Transthoracic echocardiogram was unremarkable. Patient was not on medications that could potentially affect apixaban metabolism (e.g. P-glycoprotein and strong CYP3A4 inducers). The anticoagulant regimen was changed to enoxaparin 1 mg/kg twice daily and the patient has had no further thrombotic events to date.

The incidence of thrombotic complications in patients with COVID-19 infection is elevated due to multiple factors and is associated with poorer outcomes.6,7 In this case, a cardioembolic etiology of the OAO was unlikely. Although multifactorial cardiomyopathy was described in COVID-19,8 and our patient had developed right ventricle dilatation initially, the repeat echocardiogram at the time of the OAO showed normal cardiac chambers’ sizes, valves and myocardial motility. Telemetry monitoring did not show arrhythmias and transcranial doppler ultrasound with bubble study demonstrated no cardiac shunt. Antiphospholipid antibodies in association with multiple cerebral and systemic infarctions was recently described in 3 COVID-19 patients,7 however our patient had negative titers of these antibodies. In a recent report of 5 young patients with ischemic strokes and large vessels occlusion, the presumed mechanisms were coagulopathy and vascular endothelial dysfunction and either antiplatelets or apixaban were begun.7 The coagulopathy that COVID-19 patients develop may be unique and different from other virus-induced or sepsis related coagulopathy and considerable investigation remains to be done. Evidence of venous and arterial thromboembolic events in these patients suggest that pharmacologic anticoagulation prophylaxis for all hospitalized patients with confirmed or highly suspected COVID-19, regardless of venous thromboembolism (VTE) risk should be considered; such prophylaxis is recommended by major societies (e.g. American Society of Hematology, International Society of Hemostasis and Thrombosis, Anticoagulation Forum). A systematic review of 26 consecutive patients with severe COVID-19 who were screened for VTE showed 100% rate of VTE in patients who received prophylactic anticoagulation when compared to 56% rate of VTE in patients receiving therapeutic anticoagulation.7 Our patient also had evidence of VTE early in the infectious disease process and was treated with a therapeutic dose of low-molecular-weight-heparin (LMWH). One day after switching to therapeutic apixaban, he developed an arterial thrombotic event. D-Dimer was noted to remain mildly elevated despite therapeutic anticoagulation. While D-Dimer elevation have been associated with worse outcomes in patients with COVID-19,6 it is unknown if intensification of anticoagulant therapy based on D-Dimer thresholds alone improve patient outcomes.11 Current guidelines do not recommend monitoring D-Dimer for the purpose of guiding anticoagulant therapy,11 even so in our case it provided meaningful information.

Controversy exists on the best management algorithm for the hypercoagulable state associated to COVID-19.12 Prior reports support anti-inflammatory properties of heparin in other medical conditions,13 and current anticoagulation guidelines endorse either direct oral anticoagulants or LMWH for COVID-19 patients with VTE at
hospital discharge.10,11 Hence, the optimum regimen for ischemic stroke prevention in COVID-19 and the significance of D-Dimer for anticoagulation monitoring remain unclear and warrant further investigation.

Disclosures: Drs. Dumitrascu, Bose and Wang report no disclosures. Dr. Volod is a consultant for Diagnostica STAGO. Dr. Biousse has received research support from NIH/NEI core grant P30-EY006360 (Department of Ophthalmology) and from NIH/PHS (UL1-RR025008). Dr. Biousse is a consultant for GenSight Biologics. Dr. Lyden is funded by NIH, U24NS113452 and R01 NS07930. Dr. Lyden receives royalties from the book Thrombolytic Therapy for Acute Ischemic Stroke, 3rd ed.

References