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Background. Understanding the link between tuberculosis (TB) and diabetes is increasingly important as public health re-
sponds to the growing global burden of noncommunicable diseases. Genetic association studies have identified numerous host ge-
netic variants linked to TB; however, potential host genetic mechanisms linking TB and diabetes remain unexplored.

Methods. We used genetic and phenotypic data from the UK Biobank to evaluate the association of 6 previously reported 
TB-related host genetic variants (genome-wide significant associations from published studies) with diabetes. The study included 
409 692 adults of European ancestry including 2177 with type 1 diabetes mellitus (T1DM) and 13 976 with type 2 diabetes mellitus 
(T2DM), defined by ICD-10 diagnosis codes.

Results. Of the 6 TB-associated single nucleotide polymorphisms (SNPs), 2 were associated with T1DM and 3 with T2DM, 
after adjusting for age, sex, body mass index, smoking, alcohol use, and population structure. After correction for multiple testing, 
SNPs rs2894257 and rs3135359 (HLA-DRA-DQA1) were associated with T1DM (rs2894257: odds ratio [OR], 1.32; 95% confidence 
interval [CI], 1.21–1.45; rs3135359: OR, 1.72; 95% CI, 1.57–1.88) and T2DM (rs2894257: OR, 1.11; 95% CI, 1.08–1.15; rs3135359: 
OR, 1.06; 95% CI, 1.025–1.096). The associations with T2DM weakened for rs2894257 and rs3135359 after further exclusion of prob-
able T1DM cases defined by International Statistical Classification of Diseases and Related Health Problems (ICD-10) codes. SNP 
rs4733781 on chromosome 8 (ASAP1 gene) was associated with T2DM after exclusion of T1DM cases.

Conclusions. Our findings suggest that common host genetic effects may play a role in the molecular mechanism linking TB 
and diabetes. Future large genetic studies of TB and diabetes should focus on developing countries with high burdens of infectious 
and chronic diseases.

Keywords.  tuberculosis; diabetes; host genetics; T1DM; T2DM.

More than 10 million incident cases of tuberculosis (TB) occur 
around the world each year [1]. In 2017, 1.6 million deaths from 
TB made it the most common cause of death from infectious 
disease and 1 of the top 10 causes of death worldwide. TB dis-
ease results from either rapid progression of a recently acquired 
M. tuberculosis (Mtb) infection or reactivation of a previous la-
tent infection [2]. Rising noncommunicable disease (NCD) in-
cidence is contributing to the profound burden of TB, as NCD 
comorbidities impact TB susceptibility and TB treatment out-
comes. Diabetes mellitus (DM) increases susceptibility to TB, 

and an estimated 15% of global TB cases may be attributable 
to DM [3]. New biomedical approaches and technologies that 
provide insight into mechanisms of TB–diabetes synergy could 
help inform host-directed therapies for both diseases.

A number of genome-wide association studies (GWAS) have 
been performed to identify host genetic associations with either 
susceptibility to Mtb infection or the risk of progressing from 
Mtb infection to symptomatic, active TB disease [2]. GWAS 
studies have identified SNPs associated with susceptibility to 
active TB. These include rs4331426 (18q11.2; P = 6.8×10−9) [4] 
and rs2057178 (P = 2.57×10–11) [5], identified in African popu-
lations, and variants in the ASAP1 gene on chromosome 8q24 
(rs4733781: P = 2.6×10−11), identified in a Russian population 
[6]. These associations have been replicated in populations 
of different genetic ancestries such as Asian, European, and 
African (Supplementary Table 1) [5, 7–9]. Tian et al. conducted 
a GWAS of 23 common infections and infection-associated pro-
cedures and found several SNPs associated with Mtb infection 
in the 6p21.33 HLA region (eg, SNP rs2894257: P = 8.16×10−36; 
odds ratio [OR], 1.36; 95% confidence interval [CI], 1.33–1.39) 
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[10]. Qi et  al. also reported that HLA-DQB1 0201 (OR, 0.47; 
95% CI, 0.26–0.69; Bonferroni-corrected P = 2.80×10–3), was 
associated with active TB disease [11].

Few studies have been conducted to evaluate shared host 
genetic factors between TB and diabetes. With diabetes prev-
alence increasing rapidly, particularly in countries with a high 
incidence of TB [12], further exploration of the genetic mech-
anisms underlying the comorbidity of TB and diabetes could be 
helpful for identifying vulnerable populations and appropriate 
interventions. In the present study, we investigated whether 
host genetic variants previously associated with Mtb infection 
susceptibility and TB progression were associated with preva-
lent diabetes mellitus. We used genotypic and phenotypic data 
from the UK Biobank (UKB) to examine the associations of 6 
genetic variants with type 1 and type 2 diabetes [13].

METHODS

Study Design and Data Source

We conducted a cross-sectional genetic association analysis of 
baseline phenotype data from the UK Biobank. We focused on 
452 264 participants of European ancestry with high-quality ge-
netic data from 502 616 adults (aged 37 to 73 years) recruited 
between 2007 and 2010 [14]. After excluding closely related 
individuals, the present analysis included an unrelated sample 
of 342 574 participants of European ancestry with genetic data 
confirmed (Supplementary Figure 1). Social demographic fac-
tors (eg, education level, household income), lifestyle factors 
(eg, smoking history, alcohol consumption, physical activity), 
medical history (as documented by  the 10th revision of the 
International Statistical Classification of Diseases and Related 

Health Problems [ICD-10] codes), and summary information 
relating to diagnoses were collected during the baseline visit 
and from hospital records [15]. Written informed consent was 
obtained from each participant before data collection.

Outcomes and Covariates

Study outcomes of interest included type 1 and type 2 diabetes 
mellitus (Supplementary Figure 1). Cases of type 1 diabetes 
mellitus (T1DM) were identified by the ICD-10 code “E10 
insulin-dependent diabetes” (n = 2177). Cases of type 2 diabetes 
mellitus (T2DM) were defined by the primary and secondary 
ICD-10 diagnosis codes of “E11 non-insulin-dependent diabetes 
mellitus” (n = 13 976). Participants without T1DM or T2DM 
were considered the nondiabetic control group for this analysis 
(n = 310 267). Because we identified some participates who had 
both T1DM and T2DM codes, we created an additional T2DM-
only case group (n = 12 502) by excluding those who had pri-
mary or secondary T1DM (n = 1474). Body mass index (BMI) 
was categorized as overweight/obese (BMI ≥ 25) and normal/
underweight (BMI < 25). Self-reported cigarette smoking was 
dichotomized as current vs noncurrent. Self-reported alcohol 
consumption was dichotomized as high frequency (daily or al-
most daily, 3 or 4 times a week) and low frequency.

Genetic Data

Genotyping was performed using Affymetrix UK BiLEVE 
and UK Biobank Axiom arrays, and quality control and im-
putation were performed by a collaborative group headed by 
the Wellcome Trust Centre for Human Genetics, as previously 
described [15]. In addition to 3 genome-wide significant lead 
SNPs associated with TB (1 from each of 18q11.2, 11p13, and 

Table 1. Baseline Characteristics of the Cases and Controls of European Ancestry in the UK Biobank Cohort, 2006–2010

Variables

Controls Without DM   
(n = 310 267)

Cases With T1DM 
(n = 2177)

Cases With T2DM  
(n = 13 976) Pa

Mean ± SD or No. (%) Mean ± SD or No. (%) Mean ± SD or No. (%)  

Age, mean ± SD, y 56.7  ± 8.0 58.7 ± 7.7 60.8 ± 6.6 <.001

Sex <.001

 Female 169 482 54.62 880 40.42 5 220 37.35  

 Male 140 785 45.38 1 297 59.58 8 756 62.65  

Body mass index, kg/m2       <.001

 Median (IQR) 26.54 (5.54) 29.23 (7.67) 31.15 (7.26)  

 Mean ± SD 27.16 ± 4.57 30.07 ± 5.96 31.95 ± 5.82  

  <25.0 107 518 34.65 479 22.00 1316 9.42  

 ≥25.0 202 749 65.35 1698 78.00 12 660 90.58  

Smoking status (current)       <.001

 Yes 29 682 9.57 259 11.90 259 11.84  

 No 280 585 90.43 1918 88.10 12 321 88.16  

Alcohol intake frequency       <.001

 >3/wk 143 777 46.34 684 31.42 4511 32.28  

 No or <3/wk 166 490 53.66 1493 68.58 9465 67.72  

Abbreviations: DM, diabetes mellitus; IQR, interquartile range; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
aFor continuous and categorical variables, differences between cases (T1DM or T2DM) and controls were compared using the Kruskal-Wallis test and logistic regression test, respectively. 
Comparisons between the cases and the controls were statistically significant for both T1DM and T2DM. Therefore they were not listed separately. 
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ASAP1 loci), we selected 3 SNPs from the human leukocyte 
antigen (HLA) region for significant and independent asso-
ciations with positive TB skin test [10]. Collectively, 6 inde-
pendent TB-related genetic variants from 4 loci were identified 
through the published GWAS studies and included in this study 
(Tables 2–4). Details of the studies, including sample size, ethnic 
group, ORs, and P values, are given in Supplementary Table 1. 
The summarized 6 TB-related SNPs were the main exposure 
in this study of prevalent T2DM. Summary information of the 
candidate TB-related variants is given in Supplementary Table 
2, including alleles, gene context, and imputation quality score.

Statistical Analyses

To identify common predisposing genetic factors for TB and dia-
betes, we performed cross-sectional analyses to assess the associ-
ation of 6 TB-related genetic variants with prevalent T1DM and 
T2DM. Logistic regression models adjusted for social demographic 
factors (age, sex), lifestyle (smoke, alcohol consumption), and BMI 
at enrollment, as well as for population structure, using principal 

components (PCs) 1–10 from the genome-wide SNP data. PLINK2 
(https://www.cog-genomics.org/plink/2.0/) was used to calcu-
late genotype distributions, Hardy-Weinberg equilibrium (HWE), 
and summary statistics for genetic association (P value, odds ratio, 
with 95% CI). Test statistics comparing the phenotypes between 
subgroups were calculated using R, version 3.5.0 (https://www.r-
project.org/). For each genetic variant, we performed 2 multivar-
iate logistic regression analyses to calculate ORs and 95% CIs for the 
prevalence of T1DM/T2DM. The first model was adjusted for age, 
sex, BMI, and PC1-10. The second model included covariates from 
the first model, plus current smoking and alcohol consumption. 
Because multiple genetic associations were tested, we adjusted the 
statistical significance threshold using Bonferroni correction (.05/
number of tested SNPs) to control for false positives.

RESULTS

The present study consisted of 310 267 individuals without 
T1DM or T2DM diagnosis, 2177 participants having T1DM 

Table 2. Genetic Associations of T1DM With TB-Related SNPs in the UK Biobank (2177 T1DM Cases, 310 267 Controls)

Chromosome POS SNP ID Allelesa Freqb Model 1c Model 2d

 OR (95% CI) P Value OR (95% CI) P Value

6 31628397 rs148844907 T/A 0.01 0.771 (0.555–1.073) .123 0.768 (0.552–1.068) .117

6 32390578 rs3135359 T/C 0.73 1.722 (1.573–1.886) 5.85×10–32 1.721 (1.572–1.884) 7.15×10–32

6 32433276 rs2894257 G/C 0.51 1.320 (1.205–1.445) 1.97×10–9 1.315 (1.201–1.440) 3.27×10–9

8 131296767 rs4733781 C/A 0.69 1.037 (0.972–1.105) .272 1.037 (0.992–1.165) .261

11 32364187 rs2057178 A/G 0.84 1.075 (0.992–1.165) .076 1.073 (0.992–1.165) .084

18 20190795 rs4331426 G/A 0.97 0.907 (0.773–1.065) .234 0.906 (0.772–1.063) .226

Abbreviations: CHROM, chromosome number; CI, confidence interval; Freq, frequency of effect allele; OR, odds ratio; POS, base pair position (GRCh37/hg19); SNP, single nucleotide 
polymorphism.
aThe 2 alleles represent reference/effect alleles.
bFreq: frequency of effect allele.
cModel 1: basic adjusted model with age, sex, body mass index, principal components 1–10.
dModel 2: full adjusted model with age, sex, body mass index, smoking, alcohol, principal components 1–10.

Table 3. Genetic Associations of T2DM With TB-Related SNPs in the UK Biobank (13 976 T2DM Cases, 310 267 Controls)

CHROM POS SNP ID Allelesa Freqb Model 1c Model 2d

 OR (95% CI) P Value OR (95% CI) P Value

6 31628397 rs148844907 T/A 0.01 0.974 (0.875–1.084) .633 0.977 (0.877–1.088) .67

6 32390578 rs3135359 T/C 0.73 1.061 (1.026–1.096) .001 1.060 (1.025–1.096) .001

6 32433276 rs2894257 G/C 0.51 1.111 (1.077–1.145) 1.42×10–11 1.106 (1.073–1.140) 1.14×10-10

8 131296767 rs4733781 C/A 0.69 1.030 (1.003–1.058) .026 1.031 (1.004–1.058) .024

11 32364187 rs2057178 A/G 0.84 0.988 (0.956–1.022) .488 0.986 (0.954–1.020) .427

18 20190795 rs4331426 G/A 0.97 0.973 (0.909–1.041) .421 0.970 (0.906–1.037) .371

Abbreviations: CHROM, chromosome number; CI, confidence interval; Freq, frequency of effect allele; OR, odds ratio; POS, base pair position (GRCh37/hg19); SNP, single nucleotide 
polymorphism.
aThe 2 alleles represent reference/effect alleles.
bFreq: frequency of effect allele.
cModel 1: basic adjusted model with age, sex, body mass index, principal components 1–10.
dModel 2: full adjusted model with age, sex, body mass index, smoking, alcohol, principal components 1–10.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa106#supplementary-data
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diagnosis codes, and 13 976 participants having T2DM diag-
nosis codes from the UK Biobank cohort from 2006 to 2010 
(Supplementary Figure 1). Table 1 summarizes the distributions 
of age, sex, BMI, smoking, and alcohol consumption in the 2 
case groups and controls at enrollment. Overall, members of 
the T1DM and T2DM case groups were older than the control 
group and included higher proportions of males, overweight or 
obese individuals, current smokers, and frequent consumers of 
alcohol.

Summarized in Table  2, the C alleles of rs2894257 and 
rs3135359 at the HLA-DRA-DQA1 locus were associated with 
increased odds of T1DM after adjusting for age, sex, BMI, and 
top 10 PCs (model 1: rs2894257: OR, 1.32; 95% CI, 1.21–1.45; 
rs3135359: OR, 1.72; 95% CI, 1.57–1.89) and after adjusting for 
these variables in addition to smoking status and alcohol con-
sumption (model 2: rs2894257: OR, 1.32; 95% CI, 1.20–1.44; 
rs3135359: OR, 1.72; 95% CI, 1.57–1.88). Associations with 
both SNPs remained statistically significant after Bonferroni 
correction for multiple testing.

Comparing 13 976 participants with T2DM diagnosis codes 
with non-DM controls, the TB risk alleles—2 SNPs in the HLA 
region (rs3135359 and rs2894257) and 1 in the ASAP1 gene 
(rs4733781)—were associated with increased odds of T2DM 
(Table  3). After Bonferroni correction for multiple testing 
(P  =  .05/6 = .0083), the associations of both rs2894257 and 
rs3135359 remained significant.

To remove potential misclassification of T2DM as T1DM, 
we further excluded any T2DM patients who also had primary 
or secondary T1DM diagnosis from the T2DM case group 
(n = 12 502). As shown in Table  4, the OR for the associa-
tion of rs2894257 with T2DM was reduced from 1.11 to 1.08 
(model 1: 95% CI, 1.05–1.12; P = 8.65×10–7; 95% CI, 1.05–1.12; 
P = 3.60×10–6). None of the other 5 tested genetic associ-
ations were significant after Bonferroni correction for multiple 
testing. The SNP in the ASAP1 gene, rs4733781, was marginally 

associated with T2DM at the nominal threshold (raw P < .05) 
with an OR of 1.03 (95% CI, 1.002–1.06).

Phenome-wide association studies (PheWAS) offer a comple-
mentary framework to investigate genetic associations across 
many disease traits simultaneously [16]. We examined ge-
netic associations between target SNPs and clinical phenotypes 
using the GeneATLAS browser (http://geneatlas.roslin.ed.ac.
uk/phewas/) [17]. Although PheWAS results for rs2894257 
(C/G) were not available, we identified numerous diseases and 
traits associated with rs3135359. Phenome-wide associations 
for the T1DM-associated rs3135359 in the European ancestry 
subset of the UK Biobank data are summarized in Table  5. 
The TB-associated C allele of rs3135359 increased the risk of 
noncancer thyroid conditions by 81%. The top-ranked dis-
ease traits (ie, the lowest P values) associated with rs3135359 
included thyroid conditions, neurological problems, blood cell 
traits, and other autoimmune diseases.

DISCUSSION

Based on >300 000 Caucasian participants from the UK 
Biobank, we found that a TB-related variant in the HLA-DRA-
DQA1 region (rs2894257) was associated with both T1DM 
(OR, 1.31; 95% CI, 1.21–1.45) and T2DM (OR, 1.08; 95% CI, 
1.05–1.12). A second variant in this region, rs3135359, was also 
associated with T1DM but not T2DM after exclusion of T2DM 
cases who also had a T1DM diagnosis code. A  third variant, 
rs4733781 (ASAP1), was moderately associated with T2DM 
(OR, 1.03; 95% CI, 1.00–1.06) but not T1DM.

The closest gene to SNP rs3135359 is BTNL2, which belongs 
to the butyrophilin-like B7 family of immunoregulators (pro-
teins involved in immune surveillance) [18]. It mainly works 
as a negative T-cell regulator that decreases T-cell prolifera-
tion and cytokine release [19]. The naturally occurring muta-
tions in BTNL2 are associated with several diseases, including 

Table 4. Genetic Associations of T2DM (Excluding T1DM) and TB-Related SNPs in the UK Biobank (12 502 Non-T1DM T2DM Cases, 310 267 Controls)

Chromosome POS SNP ID Allelesa Freqb Model 1c Model 2d

 OR (95% CI) P Value OR (95% CI) P Value

6 31628397 rs148844907 T/A 0.01 0.942 (0.843–1.053) .296 0.945 (0.845–1.056) .319

6 32390578 rs3135359 T/C 0.73 1.024 (0.990–1.061) .170 1.024 (0.989–1.060) .187

6 32433276 rs2894257 G/C 0.51 1.084 (1.050–1.119) 8.65×10–7 1.079 (1.045–1.114) 3.60×10–6

8 131296767 rs4733781 C/A 0.69 1.030 (1.002–1.059) .036 1.031 (1.003–1.060) .033

11 32364187 rs2057178 A/G 0.84 0.972 (0.938–1.007) .115 0.970 (0.936–1.005) .096

18 20190795 rs4331426 G/A 0.97 0.981 (0.914–1.054) .608 0.979 (0.911–1.051) .552

Abbreviations: CHROM, chromosome number; CI, confidence interval; Freq, frequency of effect allele; OR, odds ratio; POS, base pair position (GRCh37/hg19); SNP, single nucleotide 
polymorphism.
aThe 2 alleles represent reference/effect alleles.
bFreq: frequency of effect allele.
cModel 1: basic adjusted model with age, sex, body mass index, principal components 1–10.
dModel 2: full adjusted model with age, sex, body mass index, smoking, alcohol, principal components 1–10.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa106#supplementary-data
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sarcoidosis, ulcerative colitis, inflammatory bowel disease, 
T1DM, and prostate cancer [20].

The ASAP1 gene (also known as AMAP1 and DDEF1) 
encodes a multidomain ADP-ribosylation factor GTPase-
activating protein, which is involved in the regulation of 
cytoskeletal dynamics, receptor recycling, and intracellular 
vesicle trafficking [6, 21]. Its expression is associated with 
poor prognosis for a variety of cancers and promotes cell mi-
gration, invasion, and metastasis. Although the functional 
role of ASAP1 in diabetes is unclear, elevated expression of 
ASAP1 mRNA was reported in adipose tissue isolated from 
obese mice and mice with diabetes compared with tissue iso-
lated from wild-type mice [22]. Loss of ASAP led to delayed 
adipocyte development and reduced fat depot formation in 
mice [23]. Using the Genotype-Tissue Expression (GTEx) 
database to search for the functional links of genetic vari-
ants to gene expression levels, we found that rs4733781 is 
strongly associated with ASAP1 expression in whole blood 
(P = 6.5×10-10), thyroid (P = 1.5×10–7), skin (P = 1.7×10–7), 
and lung (P  =  2.5×10–6) tissues. The association we found 
between ASAP1 and T2DM offers a clue to potential mech-
anisms underlying the comorbidity of TB and T2DM.

Several published studies have investigated the relationship 
between TB and diabetes, motivated by observed comorbidity 

between the 2 diseases [24–26], although very little is known 
about underlying molecular mechanisms [27]. Our study is 
another step toward understanding host genetic variants that 
could be related to both TB and diabetes. Although the relation-
ship between TB and T2DM is suspected to be bidirectional, it 
is challenging to study the genetic risk of T2DM among people 
who have active TB or Mtb infection without large cohort 
studies that include host genetics. Most such studies, as well as 
PheWAS, have been conducted in US and European popula-
tions. Countries with high TB prevalence, which are best suited 
for studying factors underlying TB–diabetes comorbidity, are 
generally underrepresented in large genetics studies. Additional 
studies, particularly with a longitudinal design, will be needed 
to further explore relationships among host genetic risk factors 
for TB and diabetes.

In the present study, diabetes phenotypes were extracted 
from the baseline visit and from routine clinical health care 
follow-up records collected in the UK Biobank. Using ICD-10 
codes from primary and secondary diagnoses, we were able to 
identify both T1DM and T2DM patients and examine specific 
genetic associations with each disease. The wide spectrum of 
phenotypes available in the UK Biobank study facilitates the 
PheWAS approach, which we used to search for additional dis-
ease phenotypes associated with HLA-DRA-DQA1. 

This study had limitations. First, we identified T1DM and 
T2DM using diagnosis codes from the UK Biobank study. 
Although such disease definitions in large biobank studies 
permit efficient analysis of human genomics and diseases (in-
cluding diabetes [28–30]), there is likely misclassification 
due to screening practices within the population. Potential 
underdiagnosis of diabetes may reduce the power of identifying 
genetic associations. Second, as some TB-associated genetic 
variants were identified in non-European populations, the un-
derlying functional variants tagged by observed common vari-
ants may not exist or have low frequency in European ancestry 
(eg, UK Biobank Europeans). Such a difference in genetic an-
cestry may lead to negative associations using lead variants from 
previous GWAS. Ideally, we would repeat such association ana-
lyses in large genomic epidemiological studies of TB and DM 
with matching genetic ancestry (eg, Africans and South Asians). 
However, no large population studies with both phenotypic and 
genomic data in non-European ancestry are currently available 
to investigate the human genetics of TB and DM. Future human 
genetic and genomic studies need to establish large diverse co-
horts representing global ancestries [31–33], which is particu-
larly critical for TB—a global public health burden mostly in 
populations having non-European ancestries.

Our results support the hypothesis that TB-associated host 
genetic factors are also associated with T1DM and T2DM via 
immunologic functions. Moreover, common genetic factors 
and pathways may exist more broadly between other infectious 
and metabolic diseases, particularly via molecular mechanisms 

Table 5. Summary of Phenome-Wide Search for Diseases and Traits 
Associated With rs3135359 C Allele in the UK Biobank

Trait Beta P Value OR

Thyroid problem (not cancer) 0.0094 4.85×10–73 1.18

Hypothyroidism/myxoedema 0.0083 4.29×10–68 1.20

Insulin-dependent diabetes mellitus 0.0029 3.31×10–53 1.55

Multiple sclerosis –0.0019 1.48×10–47 0.54

Demyelinating diseases of the  
central nervous system

–0.0020 3.68×10–46 0.57

Chronic/degenerative  
neurological problem

–0.0026 2.25×10–45 0.65

Hemoglobin concentration, g/dL –0.0274 8.03×10–45 –

Other rheumatoid arthritis 0.0032 1.03×10–41 1.36

Other hypothyroidism 0.0055 2.81×10–40 1.18

Rheumatoid arthritis 0.0032 1.80×10–37 1.33

Disorders of thyroid gland (E00-E07) 0.0058 2.20×10–37 1.16

Standing height, m –0.1136 3.40×10–33 –

Mean corpuscular hemoglobin, g/dL –0.0376 4.58×10–29 –

Mean platelet (thrombocyte)  
volume, fL

–0.0196 9.64×10–29 –

Hayfever/allergic rhinitis –0.0055 2.54×10–25 0.90

Red blood cell (erythrocyte)  
distribution width, μm

0.0191 1.09×10–24 –

Diabetes 0.0048 1.26×10–24 1.11

Hematocrit, % –0.0571 2.80×10–23 –

Mean corpuscular hemoglobin  
concentration, g/dL

–0.0200 4.33×10–23 –

Allergy/hypersensitivity/anaphylaxis –0.0058 5.72×10–22 0.92

rs3135359: minor allele frequency, 0.27; Hardy-Weinberg equilibrium P value = .09; impu-
tation score, 1.00.

Abbreviation: OR, odds ratio.
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associated with defense against infectious pathogens. A better 
understanding of the underlying relationships between infec-
tious and chronic diseases may be particularly important for 
developing countries with a high prevalence of both.
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