About this item:

139 Views | 85 Downloads

Author Notes:

Correspondence Address: May D Wang Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Department of Electrical and Computer Engineering, Georgia Institute of Technology; Winship Cancer Institute, Emory University; and Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA, maywang@bme.gatech.edu

ACKNOWLEDGMENTS: We are grateful to Dr. Shuming Nie and Dr. Jian Liu for providing valuable prostate image data.

Subject:

Research Funding:

This research has been supported by grants from National Institutes of Health (P20GM072069, Bioengineering Research Partnership R01CA108468, Center for Cancer Nanotechnology Excellence U54CA119338, and 1RC2CA148265); Georgia Cancer Coalition (Distinguished Cancer Scholar Award to Professor Wang); Hewlett Packard, and Microsoft Research.

Keywords:

  • 3-D Tissue Image Registration
  • Cancer Heterogeneity Analysis
  • Kernel Density
  • Tissue Image Processing

Feasibility analysis of high resolution tissue image registration using 3-D synthetic data.

Tools:

Journal Title:

Journal of Pathology Informatics

Volume:

Volume 2, Number 2

Publisher:

, Pages S6-S6

Type of Work:

Article | Final Publisher PDF

Abstract:

BACKGROUND: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section) is nearly the size of the objects of interest (~10-20μm cancer cell nucleus), a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. METHODS: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI), kernel density estimate (KDE) method [1], and principal component analysis (PCA)) at various slice thicknesses (with increments of 1μm) in order to quantify the limitations of each method. RESULTS: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. CONCLUSIONS: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

Copyright information:

© 2011 Sharma Y.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/).
Export to EndNote