Correction: Transmission bottleneck size estimation from pathogen deep-sequencing data, with an application to human influenza A virus

Daniel Weissman, Emory University
Katharina Koelle, Emory University
AS Leonard, Duke University
B Greenbaum, Icahn School of Medicine at Mount Sinai
E Ghedin, New York University

Journal Title: Journal of Virology
Volume: Volume 93, Number 17
Publisher: American Society for Microbiology | 2019-09-01
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1128/JVI.00936-19
Permanent URL: https://pid.emory.edu/ark:/25593/vh834

Final published version: http://dx.doi.org/10.1128/JVI.00936-19

Copyright information:
© 2019 Sobel Leonard et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed August 20, 2024 3:12 AM EDT
Correction for Sobel Leonard et al., “Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to Human Influenza A Virus”

Ashley Sobel Leonard,a Daniel B. Weissman,b Benjamin Greenbaum,c Elodie Ghedin,d Katia Koellea

Department of Biology, Duke University, Durham, North Carolina, USAa; Department of Physics, Emory University, Atlanta, Georgia, USAab; Tisch Cancer Institute, Departments of Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USAc; Center for Genomics and Systems Biology, Department of Biology, and College of Global Public Health, New York University, New York, New York, USAad

Volume 91, no. 14, e00171-17, 2017, https://doi.org/10.1128/JVI.00171-17. As an application of the transmission bottleneck size estimation method developed in this paper, we used a previously published influenza A data set first presented by L. L. M. Poon, T. Song, R. Rosenfeld, X. Lin, et al. [Nat Genet 48(2):195-200, 2016, https://doi.org/10.1038/ng.3479]. Recently, K. S. Xue and J. D. Bloom (Nat Genet, 25 February 2019, https://doi.org/10.1038/s41588-019-0349-3) have shown that the Poon et al. data set is “technically contaminated” with read pairs split between unrelated samples, which had the effect of inflating the similarities in allele frequencies between samples. As a result, when we applied our betabinomial approach to the Poon et al. data set, it yielded transmission bottleneck size estimates that are incongruous with, and larger than, other transmission bottleneck size estimates for seasonal influenza A virus. The validity of the betabinomial estimation method presented in our paper is itself unaffected. While we therefore continue to encourage the use of our developed estimation method on other data sets, we would like to caution the reader against citing our paper as providing evidence for a loose transmission bottleneck size for influenza A virus.

Computer code for the betabinomial transmission bottleneck size estimation method is available on GitHub at https://github.com/koellelab/betabinomial_bottleneck.