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Abstract

Here we describe the development and validation of a highly sensitive assay of antigen-specific IFN-y production using real
time quantitative PCR (qPCR) for two reporters - monokine-induced by IFN-y (MIG) and the IFN-y inducible protein-10 (IP10).
We developed and validated the assay and applied it to the detection of CMV, HIV and Mycobacterium tuberculosis (MTB)
specific responses, in a cohort of HIV co-infected patients. We compared the sensitivity of this assay to that of the ex vivo
RD1 (ESAT-6 and CFP-10)-specific IFN-y Elispot assay. We observed a clear quantitative correlation between the two assays
(P<<0.001). Our assay proved to be a sensitive assay for the detection of MTB-specific T cells, could be performed on whole
blood samples of fingerprick (50 uL) volumes, and was not affected by HIV-mediated immunosuppression. This assay
platform is potentially of utility in diagnosis of infection in this and other clinical settings.
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Introduction

T cells provide a critical immune response against many
infections, including persistent pathogens such as human immu-
nodeficiency virus (HIV), cytomegalovirus (CMV) and Mycobac-
terium tuberculosis (MTB). The measurement of T' cell responses
has undergone a revolution in the last decade with the emergence
of novel ex viwo reagents such as MHC peptide tetramers and
functional assays such as interferon-gamma (IFN-y)-Elispot [1].
These assays have allowed accurate quantification of such
responses in acute and persistent infections and after vaccination.
Contemporaneously, real time quantitative PCR (qPCR) has
become an important method for profiling the transcriptional
states of cells and tissues. Moreover, qPCR has proved to be a
novel, promising method for the monitoring of cytokine release in
effector T cells against tumour and pathogen antigens [2].

IFN-y secreted by stimulated CD8+ and CD4+ T cells acts
upon other cell types, including monocytes and neutrophils, which
respond through gene upregulation [3]. Since IFN-y responsive
monocytes and neutrophils are more numerous in peripheral
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blood than antigen specific T cells (approximately 1000-10,000
fold), IFN-y-induced gene expression provides an important
amplification step for the IFN-y signal. We reasoned that this
“self-amplifying” RINA signal might provide a more sensitive
detection method for antigen exposure than measuring IFN-y
production directly. Two such reporters of IFN-y production are
monokine-induced by IFN-y (MIG) and the IFN-y inducible
protein-10 (IP10). They are members of the CXC chemokine
family and are predominantly produced by cells of the monocyte/
macrophage lineage bearing CD14. They are involved in
trafficking monocytes and activated Thl cells to inflamed foci
through interaction with their common CXCR3 chemokine
receptor. MIG has also been shown to stimulate T lymphocyte
proliferation and effector cytokine production in addition to its
chemotactic effects. Secretion of MIG is induced by interferon via
the janus kinase—signal transducer and activator of transcription
(JAK-STAT) pathway. In contrast to other interferon-stimulated
genes, optimal induction of IP10 is dependent on activation of p38
kinases and both MIG and IP10 are induced by IFN-y as well as
TNTF-alpha. Importantly, both MIG and IP10 are expressed in
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high quantities in an antigen-specific manner following stimulation
with antigens from a variety of pathogens, including CMV and
MTB [4,5]. Such analyses have used Northern blotting, ELISA,
Elispot, flow cytometry, and multiplex to measure IP10 and MIG
concentration in patient serum or after in vitro stimulation with
antigens. Subsequently, IP10 and MIG were proposed as adjunct
biomarkers for tuberculosis (TB). However, measuring MIG and
IP10 production with these techniques did not reach the sensitivity
of the standard IFN-y Elispot [5,6,7,8]. Interestingly, a recent
study in active tuberculosis has shown that measuring IP10 by
Elisa in addition to IFN-y increases diagnostic sensitivity [9,10].
Real time qPCR has been used frequently to measure the antigen-
specific immune responses of very small populations of cells and is
gaining popularity in vaccine immunology [11]. A recent study
used qPCR for MIG to detect responses in separated PBMCs to
vaccines in a controlled setting [3] and has shown that MIG
expression may correlate with protection against malaria [12]. It is
a versatile tool and can be used to measure the expression of
virtually any mRNA transcript. We therefore sought to develop a
novel gPCR-based assay for MIG and IP10 for the detection of
pathogen-specific T cells and apply this to the detection of MTB
infection, as an example of its application.

Materials and Methods

Ethical approval and informed consent was obtained from all
individuals who participated in this study (UKZN ethics board,
McCord Hospital ethics board, Massachusetts General Hospital
Ethics Board, University of Oxford ethics board and Imperial
College London ethics board).

gqPCR Assay Development

PBMCis from healthy, CMV infected volunteers were used to
establish the qPCR assay for the quantification of MIG and IP10
expression. Recombinant human IFN-y was used as a positive
control to induce MIG and IP10 expression in ex vivo PBMCs, as
IFN-y production in vivo is a potent inducer of both MIG and
IP10 expression. Whole cell CMV lysate was used as an antigenic
stimulant. 10° fresh PBMCs/condition were stimulated with
10 ng/mL IFN-y or 10 uL/ml CMV whole cell lysate (Sigma)
for 8, 12 and 16 hours. 10 pL. R10 media was used as a negative
control. 10° PBMCs/condition were stimulated with 10 ng/mL
IFN-y (positive control), 10 uL/mL of CMV whole cell lysate
(Sigma), dilutions of CMV whole cell lysate (1:10, 1:100, or
1:1,000) for 16 hours or 10 uL. R10 (null). After stimulation,
mRNA was extracted and processed by reverse transcription and
qPCR as described below.

mRNA Extraction

Extraction of cellular mRNA as performed using an RNeasy
mini kit (Qiagen) as per the manufacturer’s instructions. The
stimulation of PBMCs was stopped at 16 hours by lysing the cells
with 350 pL. RLT buffer with 1% B-mercaptocthanol. QIASh-
redder® (Qiagen) spin columns were used to homogenize the
PBMCs before mRNA extraction. All extracted mRNA was eluted
in 35 pl of RNase-free water and stored at —80°C.

Reverse transcriptase and RT-Quantitative PCR

Extracted cellular mRNA was reverse transcribed to cDNA
using 1Script cDNA synthesis kit (BIO-Rad) and 10 uL of cellular
mRNA. All RT-PCR was performed on an Applied BioSystems
GeneAmp® PCR System970 per the manufacturer’s instructions.
c¢DNA was stored at —20°C until gPCR was performed.
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After stimulation, mRNA extraction and ¢cDNA transcription,
real-time qPCR was performed for MIG, IP10, and HPR'T using
SYBR Green Master Mix (Qiagen) for a total volume of 20 pL;
1 puL input cDNA was used. Primer sequences, concentrations of
forward and reverse primers, and the size of the gene amplicons
are given:

MIG: 5-GTG GTG TTC TTT TCC TCT TG-3', 5'-GTA
GGT GGA TAG TCC

CTT GG-3', 0.5 pmol/uL, 120 bp;

IP10: 5'-TGA TTT GCT GCC TTA TCT TTC TGA-3'; 5'-
CAG CCT CTG TGT

GGT CCA TCC TTG-3', 0.25 pmol/pl, 408 bp;

HPRT: 5'-TAG GAC AGG ACT GAA CGT C-3', 5'-CTA
CAA TGT GAT GGC

CTC CC-3', 0.5 pmol/ul, 64 bp.

RT-qPCR parameters for IP10 were 10 minutes at 95°C, and
45 cycles of 95°C, 61°C and 72°C at 10 seconds each. MIG and
HPRT parameters were 10 minutes at 95°C and 45 cycles of 16
seconds at 95°C, 10 seconds at 59°C and 10 seconds at 72°C.

Standard curves for each gene of interest, cDNA for HPRT,
MIG, and IP10 were created via RT-PCR as described. The
amplified ¢cDNA samples were purified by QIAquick PCR
Purification (Qiagen) according to the manufacturer’s directions
and then quantified by UV spectrophotometry with NanoDrop
1000 (ThermoScientific). The number of cDNA copies was
calculated using the molecular weight of each gene amplicon
and the formula: RNA copy number = moles DNA x6.02x10%,
The samples were then serially diluted and tested by gPCR under
the defined conditions. All realtime gqPCR reactions were
performed in a 96-well optical microtiter plate (Roche) using
SYBR Green PCR Master Mix and a LightCycler®480 II system
(Roche). All reactions were completed in duplicate and reported as
the average. MIG and IP10 expression were normalized to HPRT
expression, and the fold increase of each was calculated using the
formula: Fold increase = (MIG or IP10 stimulated / MIG or
IP10 unstimulated) / (HPRT stimulated/ HPRT unstimulated)).

CMV IFN-v Elispot, MTB Region of Difference-1 (RD1) IFN-
v Elispot and HIV IFN-y Elispot

96-well polyvinylidene difluoride-backed Elispot plates (MAIP
S45, Millipore) were coated overnight at 4°C with 100 pl anti-
IFN-y antibody (1-D1k, 0.5 ug/ml, MabTech, Sweden). The
plates were then washed six times with blocking buffer (1% fetal
calf serum (FCS) in PBS). 50 pl of R10 (RPMI 1640 medium
supplemented with 10% FCS, 1% L-glutamine, and 1%
penicillin/streptomycin) were added to the empty wells. CMV,
MTB Region of Difference-1 (RD1) or HIV antigens were then
added to each well. For the CMV Elispot, 200,000 cells/well were
stimulated with CMYV lysate (10 ug/ml) (Sigma), serially diluted 1,
1:10, 1:100, or 1:1,000, and incubated overnight at 37°C and 5%
COy. All CMV stimulations were performed in duplicate and
reported as the average. For the RD1 Elispot, ESAT-6 and CFP-
10 peptide pools were added at a final peptide concentration of
8 ug/ml. For the HIV Elispot, HIV peptide pools were added at a
final concentration of 10 ug/ml. Phytohemagglutinin (PHA)
(10 pg/ml) was used as a positive control. PBMC were plated at
200,000 cells/well and incubated overnight at 37°C and 5% COs..
All stimulations were performed in triplicate and reported as the
average. The plates were then washed with PBS and 0.5 pg/ml of
biotinylated anti-IFN-y antibody (7-B6-1, MabTech) was added.
The plates were washed with PBS then incubated with 0.5 uL/mL
Streptavidin-alkaline phosphatase conjugate (Mabtech) for 45
minutes. After a final wash, IFN-y producing cells were identified
by direct visualization of spots produced by the addition of alkaline
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phosphatase colour reagents (Bio-Rad). CMV Elispot responses
with a mean minus negative control >50 spot-forming cells (SFC)/
10® PBMCs were considered positive. RD1 and HIV- specific
responses were considered positive if the number of spots per well
was four SFC more than negative control wells and this number
was at least twice that in negative control wells. This pre-defined
cut-off point translates into a detection threshold of 20 peptide-
specific T cells per million PBMC [13].

Assay Verification

For the verification of the qPCR assay in a clinical setting,
informed consent was obtained from 58 patients (HIV and TB
therapy naive, chronically infected with HIV-1 clade C) with a CD4
T cell count range of 96-996 cells/pl, in Durban, South Africa.
Active TB was excluded by a symptom-screening questionnaire and
physical examination. We used our own generic RD1 (ESAT-6 and
CFP-10) based Elispot —performed on freshly isolated PBMC-to
categorize patients as latently infected (Elispot positive) or
uninfected (Elispot negative). 27 individuals were ex vivo RDI
Elispot positive (RD1 positive), indicating suspected latent MTB
infection (there is no gold standard for the diagnosis of latent M'TB
infection). 31 individuals were ex vivo RD1-Elispot negative (RD1
negative), indicating absent M'TB infection. gPCR was performed
on frozen PBMC from these 46 study participants. qPCR was
performed on fresh PBMC from 24 of these study participants. A
matched comparison of MIG/IP10 expression between freeze-
thawed versus fresh PBMCs was performed on a subset of 12
patients. Informed consent was also obtained from 32 HIV positive
individuals with culture-confirmed TB with a CD4 count range of
17-734 cells/pl. gPCR was performed on frozen PBMC for 23
study participants with active TB and fresh PBMC from 9 study
participants with active TB. PBMCs (10° cells/condition) were
stimulated with 10 ng/ml recombinant IFN-y (positive control),
25 ul of R10 media (null), or ESAT-6 and CFP-10 peptide pools
(final peptide concentration of 8 pug/ml) at 37°C and 5% CO, for
16 hours. HIV gag and pol peptide pools were added at a final
concentration of 10 ug/ml. If frozen, PBMCs were thawed and
rested for 2 hours before stimulation. mRNA extraction, RT and
qPCR was performed as described above. RD1 positive and RD1
negative individuals, and active TB patients were matched for CD4
count; differences in CD4 count were not statistically significant.

In order to establish a cut-off the qPCR assay was performed on
PBMC from 9 HIV negative individuals who were all RD1 Elispot
negative and negative by PPD skin test (negative controls). A test
assay cut-off of mean + 3 Standard Deviations (SD) was used (MIG
ESAT-6=1.5361; MIG CFP-10=2.9748; 1IP10 ESAT-
6=2.9244; TP10 CFP-10 3.1709). To be considered positive for
MTB infection, MIG and IP10 expression in response to IFN-y
stimulation had to be greater than all of the cutoffs, AND be
positive for ESAT-6 and/or CFP-10 by MIG and/or IP10. If
MIG and IP10 production in response to IFN-y were less than any
of the cutofls, the assay was considered to have failed for that
chemokine/antigen combination.

Whole Blood Miniaturization

100, 25 and 10 pL of whole blood from 3 healthy, CMV infected
donors with was diluted 1:5 with R10 media and stimulated with
10 ng/mL IFN-y or ten-fold dilutions of CMV lysate (Sigma) for
16 hours. Whole blood from 8 HIV+, RD1 Elispot positive patients
(25 or 50 ul of whole blood diluted 1:5 in R10 media) was
stimulated with 10 ng/ml recombinant IFN-y (positive control),
25 ul of R10 media (null, negative control), or titrated ESAT-6 and
CFP-10 peptides at 37°C and 5% COs for 16 hours. For the ESAT-
6 and CFP-10 peptide titration, whole blood (25 pL or 50 pL

@ PLoS ONE | www.plosone.org

Molecular Assay for Pathogen-Specific T Cells

diluted 1:5 with R10 media) was stimulated with 1, 5, 10, or 20 ul of
0.16 mg/ml ESAT-6 and CFP-10 peptide pools resulting in a final
individual peptide concentration of 1.33, 6.64, 13.28 and 26.56 pg/
ml for 25 pl of whole blood and 0.66, 3.32, 6.64 and 13.28 pg/ml
for 50 pl of whole blood. HIV gag and pol peptide pools were added
at a final concentration of 10 ug/ml. Whole blood was processed
using QIAamp ® RNA Blood mini kit (Qiagen) according to the
manufacturer’s instructions. All extracted mRNA was eluted in
35 ul of RNase-free water and stored at —80°C. RT and qPCR
were performed as described above.

Statistical Analysis

Differences between medians were determined by using the
Mann-Whitney test for unpaired data and the Wilcoxon test for
paired data. A Kruskal-Wallis test was used to compare three or
more parameters. Selected pairs of data were analyzed with a
Dunn’s multiple comparison test. The correlation between two
parameters was determined by calculating the Spearman correla-
tion coefficient, . All t-tests tests were two-tailed and a
nonparametric distribution was assumed. P values where P<<0.05
were considered significant.

Results

Development of a novel assay for the detection of

antigen-specific T cells

We initially developed and validated our qPCR assay system by
the analysis of immune responses to CMV. CMV infection is a
major health threat in those with impaired cellular immunity
(including neonates, those receiving immunosuppression such as
solid organ transplant (SOT) and haematopoetic stem cell
transplant (HSCT) recipients and in HIV/AIDS) and provided a
good model for chronic infection as most people have detectable
responses [14]. To determine the timing of maximal MIG/IP10
mRNA production following stimulation, we cultured PBMCs from
healthy donors with IFN-y or CMV for 8, 12 or 16 hours. These
experiments indicated that a 12-16 hour timepoint was optimal for
detection of both MIG and IP10 (Figure 1a). To analyze the cellular
source of the signals, we examined monocyte expression of MIG
and IP10 via FACS under identical conditions. CD 14+ monocytes
were shown to strongly express MIG and IP10 when stimulated
with CMV antigen (96.5% and 98.3% of CD 14+ MIG+ and IP10+,
respectively; figure 1b), confirming reports that macrophages and
monocytes are the major MIG secreting cell populations [8,15]

We next compared the limit of detection of the qPCR assay in
PBMC:s to IFN-y Elispot, by limiting responses through dilution of
CMYV antigen. The PBMC qPCR assay was able to detect MIG and
IP10 expression at responder cell frequencies at least as low as those
detected by the IFN-y Elispot. Using cut-off values as defined in
methods, the Elispot was negative for CMV antigen dilutions below
1 in 100, whereas the qPCR assay was still positive at 1 in 100
dilution (Figure lc). In these experiments IP10 expression was
significantly higher than MIG expression (p = 0.002) and provided a
more sensitive measure of antigen reactivity. Analysis of T cell
responses against CMV therefore provided a useful model in which
to validate the assay as well as potentially providing a critical tool to
monitor antiviral CMV responses in those at risk of disease. A
schematic diagram of our qPCR assay is displayed in figure 2.

MTB infection as an example application

We next wished to assess how the sensitivity of this assay
platform for detection of responses to M'TB region of difference-1
(RD1) antigens ESAT-6 and CFP-10 in a cohort of individuals
with confirmed MTB and HIV co-infection. RD1 is a section of
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Figure 1. Development of a novel assay for the detection of antigen-specific T cells. a. Time course of cytokine-induced as compared to
antigen-induced MIG and IP10 expression. qPCR analysis of MIG (left) or IP10 (right) mRNA obtained from PBMCs stimulated with 10 ng/mL IFN-y or
10 ul/ml CMV whole cell lysate for 8, 12 and 16 hours. b. FACs analysis of MIG (top) and IP10 (bottom) in CD14+ Monocytes cultured for 16 hours with
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10 ng/ml IFN-y or 10 pl/ml CMV lysate. Monocytes were gated based on forward and side scatter. Cells were stained with mAb to CD14, fix and
permeabilized, and stained with mAbs specific for MIG or IP10. Cells gated within the monocytes/macrophage regions were evaluated for MIG and
IP10 expression. Isotype antibody for MIG and IP10 was used to control for non-specific binding. c. IFN-y Elispot (left) and IP10/MIG gPCR (right) to
serially diluted CMV lysate. The data shown represents that average of two independent experiments. Variation between experiments was
insignificant, as measured by a Paired t-Test (P>0.05). The parallel line indicates a cut-off of 505FC/10° PBMCs for the IFN-y Elispot (left). For qPCR

(right), a test assay cut-off of mean + 3SD was used (MIG ESAT-6=1.5361; MIG CFP-10=2.9748; IP10 ESAT-6 =2.9244; IP10 CFP-10 3.1709).

doi:10.1371/journal.pone.0020606.g001

the genome that is present in M'TB but deleted from all strains of
BCG and most environmental mycobacteria. Initially we analysed
three different cohorts of MTB/HIV coinfected individuals:
patients with culture confirmed active TB (n= 23), latent M'TB
infection (n=20), and MTB uninfected (n=26; see methods).
IFN-y release assays (IGRAs) (T-SPOT®.TB, based on Elispot,
and QuantiFERON®, based on ELISA technology) show
increased sensitivity and specificity when compared to the
traditional tuberculin skin test (I'ST) [16]. Unfortunately, TST
sensitivity is greatly reduced in HIV co-infected individuals due to
HIV-induced cutaneous anergy resulting in negative skin tests

despite active mycobacterial infection [17,18]. IGRAs are now
used routinely in clinical care in the Western World, for example,
in the USA, the CDC has recommended that the QuantiFERON-
TB Gold replace the TST for the diagnosis of latent MTB
infection [19]. We used our own in-house RD1 (ESAT-6 and
CFP-10) based Elispot to categorize patients as latently infected or
uninfected (in the absence of symptoms of active TB disease).
Importantly, all the individuals used in this study were categorized
based on having duplicate assay results at 2 time-points 3 months
apart. All Elispots were performed on freshly isolated PBMC
samples, and, subsequently, gPCR on frozen samples. Based on

1. Collect patient sample

Patient

Whole Blood

b

2. Stimulate PBMCs with Antigen, IFN-y

Infection
Vaccination
Pathogen Exposure

IFN- y induced gene
(e.g. IR10 and MIG)

PO@®
gLy Y I
PO@®

IFN-y stimulated
moncytes/neutrophils

Antigen-specific T cell
stimulated with Antigen

3. Incubate overnight
- | | -

ull Ny

f

+ Antigen stimulation

( v

4. Lyse Cells, Extract mRNA with RNeasy

5. RT-PCR with Bio Rad iScript to generate cDNA —>- Store for

— Later analysis

6. Quantify MIG, IP10 and HPRT mRNA expression with SYBR Green gPCR

Reprobe for
additional
analysis

7. Normalize MIG and IP10 to HPRT expression by

Fold Increase = (MIG or IP10 Stimulated/Unstimulated)
(HPRT Stimulated/Unstimulated)

8. Analyse and Diagnose

Figure 2. A molecular assay for sensitive detection of pathogen-specific T-cells. Fresh or frozen PBMCs or whole blood are stimulated
overnight (16 hours) with 10 ng/ml IFN-y, 8 ug/ml ESAT-6 and 8 pug/ml CFP-10 or nothing (null). After stimulation, the cells are lysed and mRNA
extracted, cDNA synthesized via reverse transcriptase PCR. MIG, IP10 and HPRT mRNA expression are then quantified by quantitative real-time PCR.
MIG and IP10 expression is normalized by HPRT, a housekeeping gene, as well as an internal negative control (Null). Fold increase is calculated by the
formula: Fold increase = ((CXC stimulated / CXC unstimulated) / (HPRT stimulated/ HPRT unstimulated)). Importantly, the assay is highly flexible, can
be stored at any stage for batching and is amenable to automation. A test assay cut-off of mean + 3SD was used (MIG ESAT-6=1.5361; MIG CFP-
10=2.9748; IP10 ESAT-6 =2.9244; IP10 CFP-10 3.1709). To be considered positive for MTB infection, MIG and IP10 expression in response to IFN-y
stimulation had to be greater than all of the cutoffs, AND be positive for ESAT-6 and/or CFP-10 by MIG and/or IP10.
doi:10.1371/journal.pone.0020606.9002
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our assay platform an individual was considered qPCR positive if
they had a ratio of stimulated:unstimulated expression for IP10 or
MIG following antigenic stimulation exceeding 3SD from mean
control values. For our choice of MTB antigens this means that an
individual is considered positive by displaying reactivity to one or
more of the following: ESAT-6 IP10, ESAT-6 MIG, CFP-10 IP10
and/or CFP-10 MIG. One-way ANOVA with Kruskal-Wallis test
was p=0.0012 for IP10/ESAT-6, p=0.0005 for IP10/CFP-10,
p=0.0018 for MIG/ESAT-6, and p=0.0013 for MIG/CFP-10.
Dunn’s Multiple comparison test was then performed. Our novel
assay approach was able to differentiate between people that are
RD1-Elispot negative (i.e. those we presume to be uninfected) and
those we have categorized as latently infected (RD1 positive)
(IP10/ESAT-6 p<<0.001, IP10/CFP-10, p<<0.01MIG/ESAT-6
p<0.01, and MIG/CFP-10 p<0.001) (data not shown). However,
like the IGRAs, it is unable to differentiate between RD1 positive
(latently MTB infected) and those with active TB disease.

The ability to use either fresh or frozen cells provides many
technical advantages to our qPCR assay. However, many recent
studies have reported that freeze-thawed PBMCs show altered
gene expression, viability and functionality. To determine if
freezing and thawing cells alters the expression of MIG and IP10,
and if our assay and its sensitivity could potentially be improved by
using fresh PBMCs, we performed our standard MTB assay on
matched fresh and frozen samples. We then compared the levels of
MIG and IP10 mRNA expression between the fresh and frozen
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sample groups (Wilcoxon matched pairs test). The mean MIG and
IP10 expression was significantly higher in fresh PBMC samples as
compared to frozen PBMCs (data not shown), indicating that
testing fresh rather than frozen samples could significantly improve
the MIG and IP10 signal (p = 0.00676, 0.0023, 0.0295 and 0.0040
for the four conditions).

As a result of these findings we decided to assess if there was a
difference between MIG and IP10 expression in freshly isolated
PBMC:s from individuals with and without active TB. Performing
the assay on fresh cells does not substantially improve the
differentiation of the 3 groups of individuals observed from frozen
samples. Figure 3a shows IP10 increase following both ESAT-6 and
CFP-10 stimulation, while figure 3b shows MIG increase following
both ESAT-6 and CFP-10 stimulation. One-way ANOVA with
Kruskal-Wallis test was p=10.0019 for IP10/ESAT-6, p =0.0032
for IP10/CFP-10, p = 0.0104 for MIG/ESAT-6, and p =0.0154 for
MIG/CFP-10. Dunn’s Multiple comparison test was then per-
formed. The data indicate that our novel assay is able to
differentiate between people that are RDI-Elispot negative (i.e.
those we presume to be uninfected) and those we have categorized
as latently infected (RD1 positive) (p<<0.05 (IP10/ESAT-6), p<0.05
(IP10/CFP-10) (figure 3a) and (p<<0.05 (MIG/ESAT-6), p<<0.05
(MIG/CFP-10) (figure 3b)). However, like the IGRASs, there was no
significant difference in response between RD1 positive (presumed
latently MTB infected) and those with active TB disease. The gPCR
approach was (with the exception of MIG/CFP-10) able to
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Figure 3. Mycobacterium tuberculosis infection as an example application. qPCR fold increase of IP10 (a) or MIG (b) in response to 8 ug/ml
ESAT-6 or CFP-10 antigenic stimulation of 10° fresh PBMC for 16 hours. Patients are grouped according to RD1 Elispot status or culture confirmed
active TB. NC (Negative Control) = HIV negative individuals who are RD1 Elispot negative and negative by PPD skin test, RD1— = HIV positive
individuals who are RD1 Elispot negative with no symptoms of active TB, RD1+ = HIV positive individuals who are RD1 Elispot positive with no
symptoms of active TB. One-way ANOVA with Kruskal-Wallis test was p =0.0019 for IP10/ESAT-6, p =0.0032 for IP10/CFP-10, p=0.0104 for MIG/ESAT-
6, and p=0.0154 for MIG/CFP-10. Dunn’s Multiple comparison test was then performed. p<<0.05 was considered significant. The Dunn’s Multiple
comparisons test showed a significant difference between RD1 negative and RD1+, and RD1 negative and active TB.

doi:10.1371/journal.pone.0020606.g003
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Table 1. qPCR was performed on frozen PBMCs from 69 individuals (grouped based on their RD1 IFN-y Elispot status in the
absence of symptoms of active TB) or clinical diagnosis of active TB.

Cut off Patient Group # Positive qPCR Responses Total qPCR Positive Patient Total
V] 1 2 3 4
Mean +35D RD1— 16 7 3 0 0 10 2
RD1+ 0 7 6 3 4 20 20
Active TB 9 3 3 3 5 14 23
Total 25 17 12 6 9 44 69

doi:10.1371/journal.pone.0020606.t001

differentiate between RD]1-Elispot negative and those with active
TB (p<<0.01 (IP10/ESAT-6), p<<0.01 (IP10/CFP-10) (figure 3a)
and (p<<0.05 (MIG/ESAT-6) (figure 3b)).

Interestingly, even using a stringent cut-off of mean + 35D, 10
out of 26 (38.5%) RDI Elispot negative individuals were qgPCR
positive, 20 out of 20 RD1 (100%) Elispot positive individuals were
qPCR positive, and 14 of our 23 (60.8%) individuals with culture-
confirmed active TB are qPCR positive (table 1). Interestingly, of
the 9 individuals with culture-confirmed TB that had both the
Elispot and qPCR assay performed on fresh PBMC, 8 out of 9
(89%) of individuals were positive by qPCR while 7 out of 9 (78%)
of these individuals were positive by Elispot (table 2). These data
indicate that the novel assay is at least as sensitive in detection of
TB-specific responses as the Elispot and may reveal a subset of
individuals with ex vivo responses below the level of conventional
detection. It is clear that T cell populations can exist below the
level of detection by ex vivo Elispot using a cultured Elispot
approach, so it likely that we are picking up similar low frequency
populations [20]. A statistically significant difference between the
gPCR fold increase observed in responses in individuals who were
RD1 Elispot positive compared to those who were RD1 Elispot
negative (p=0.0016) (figure S1).

Since the cohort was co-infected, and T cell responses to HIV
are an important biomarker in vaccine development, we also
evaluated the assay for detection of HIV-specific T cell responses.
Unlike TB, these responses are largely derived from CD8+ T cells.
To evaluate the use of the novel assay approach in HIV we tested
fresh PBMC from 6 HIV infected individuals stimulated with HIV
Gag and Pol peptide pools. Figure 4a shows that strong IP10 and
MIG responses were observed following stimulation with Gag and,
to a lesser extent, Pol. All individuals had a positive response
following stimulation with Gag peptide pools, while only 3 out of 6
had a positive response following stimulation with Pol peptide
pools. Figure 4b displays the Elispot data for the 6 HIV positive
individuals. All 6 individuals had a positive Elispot response
following stimulation with Gag peptide pools, while only 3 out of 6
were positive following stimulation with Pol peptide pools and, in
parallel to the MIG and IP10 qPCR results, these responses were
at lower spot forming cells (SFC) frequencies than for Gag
responses (Gag vs Pol; MIG, IP10 and Elispot all p=0.03).

Quantitative Correlation between Elispot and qPCR assay

For such an assay to be valuable it needs not only to be sensitive
but also to provide an estimate of the size of the immune response.
To do this we related Elispot response to qPCR response for the
pathogens studied. Figure 5a demonstrates the correlation between
the CMV MIG/IP10 qPCR and CMYV Elispot assay. Elispot SFC
and qPCR fold increase of MIG and IP10 expression were strongly

@ PLoS ONE | www.plosone.org

The number of positive gPCR responses are shown per patient group. To be considered positive for MTB infection by qPCR, MIG and IP10 expression in response to
IFN-v stimulation had to be greater than all of the cutoffs, AND be positive for ESAT-6 and/or CFP-10 by MIG and/or IP10.

correlated following stimulation with CMV lysate (MIG: r=0.9461,
P=0.0011; IP10: r=0.9701, P=0.0004). Figure 5b demonstrates
the correlation between the MTB qPCR assay and the MTB RD1-
specific Elispot assay. Elispot SFC and qPCR fold increase of MIG
and IP10 expression were strongly correlated following stimulation
with both ESAT-6 and CFP-10 (MIG ESAT-6: r=0.5406,
P=0.0005; IP10 ESAT-6: r=0.5653, P=0.0003, MIG CFP-10:
r=0.569, P=0.0002; IP10 CFP-10: r =0.5851, P=0.0001).

Impact of HIV-induced immunosuppression on the MIG/
IP10 gPCR assay

Next, we determined if the qPCR assay is impaired by varying
levels of immunosuppression related to HIV progression. We did
not find a significant correlation between the qPCR fold increase
and CD4 count for MIG or IP10 on assays using frozen PBMC
with active or latent disease, or using fresh cells (figure S2). These
results indicate that the qPCR assay is not affected by HIV-
mediated immunosuppression.

Validation of the qPCR assay using whole blood

Analysis of antigen-specific responses in whole blood provides a
significant methodologic advantage and in particular retains an
additional population of reporter cells in the form of neutrophils
(which are lost during PBMC separation). We therefore confirmed
that the assay could be successfully performed on whole blood to
detect antigen-specific T cells. We analyzed the sensitivity of the
whole blood assay using limiting quantities of blood to identify T
cell responses ex wviwo. Figure 6a shows that the qPCR assay
performs well when whole blood is stimulated with CMYV antigens.
We found that we could reliably reduce blood volumes to as low as
25 pL per sample and still retain high sensitivity and specificity, in
particular for IP10 detection. Figure 6b shows that 50 uL of blood
is more suitable when whole blood (from an HIV positive

Table 2. qPCR detects a larger proportion of individuals with
active TB than does RD1 Elispot in both fresh and frozen
PBMC samples.

# of Positive Patients /
# of Patients Tested

Patient Group qPCR RD1 Elispot

Active TB Fresh PBMC

Frozen PBMC

8/9 (88.8%)
14/23 (60.8%)

7/9 (78%)
6/15 (40%)

doi:10.1371/journal.pone.0020606.t002
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Figure 4. HIV infection as an example application. Fresh PBMC
from 6 HIV infected individuals were stimulated with HIV Gag (left) and
Pol (right) peptide pools. Strong qPCR (a) and Elispot (b) responses were
observed following peptide stimulation.
doi:10.1371/journal.pone.0020606.g004

individual with presumed latent M'TB infection) is stimulated with
the RD1 antigens ESAT-6 and CFP-10 (data shown is repre-
sentative of 8 examples). Figure 6¢ displays data from stimulation
of 50 puL. of whole blood from an HIV infected individual with
presumed latent MTB infection with a selection of peptide pools
including HIV Gag and Pol. Strong responses are observed
following gag and ESAT-6 stimulation.

Discussion

In this study, we developed a novel assay for the detection of
antigen-specific T cells. We then assessed its use for the detection of
MTB infection in a HIV-coinfected cohort. This report demon-
strates that qPCR using IFN-y reporter genes can be used to
accurately and sensitively detect antigen-specific CD4+ and CD8+
T cell responses against persistent infection, e.g. CMV, MTB and
HIV. Importantly, we show that such an assay can be performed on
small quantities of whole blood without loss of accuracy, and can be
performed on immunocompromised individuals.

Other studies have investigated MIG and IP10 as a marker of
CMV, MTB and other infections. Such analyses have used
Northern Blotting, ELISA, Elispot, FACs, and multiplex to
measure [P10 and MIG concentration in patient serum or
production in response to antigens. These studies indicated that
MIG and IP10 can be used as a surrogate for IFN-y production
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Figure 5. Quantitative Correlation between Elispot and qPCR
assay. Correlation between MIG/IP10 qPCR and IFN-y Elispot for CMV
infection (a). The Elispot and qPCR responses to individual peptide
pools were pooled and compared. Elispot SFC and qPCR fold increase of
MIG and IP10 expression were significantly correlated. Correlation
between MIG/IP10 gPCR and IFN-y Elispot for Mycobacterium tubercu-
losis infection (b). r and p values shown; p<<0.05 is significant. Data
shown is taken only from individuals where both assays were
performed on freshly isolated PBMC samples.
doi:10.1371/journal.pone.0020606.g005

and that their upregulation is in an antigen-specific manner.
However, measuring MIG and IP10 protein production with these
techniques did not compare to the sensitivity of the standard
IFN-y Elispot. This novel gPCR assay approach, reported here,
appears to match and even surpass the sensitivity assay of the
Elispot platform. T cell populations can exist below the level of
detection of the ex vivo Elispot using a cultured Elispot approach,
so it likely that the qPCR assay described here are picking up
similar low frequency populations[20]. It should be noted that
there was no obvious diagnostic benefit of stimulating separately
with both ESAT-6 and CFP-10 antigens and therefore we propose
that future assays stimulate with combined peptide pools.

The gPCR platform could be of significant value for a number of
reasons. Firstly, the ability to evaluate T cell responses with high
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Figure 6. Validation of the qPCR assay using whole blood. gPCR
for MIG and IP10 can detect CMV (a) MTB (b) and HIV (C) -specific immune
responses using only 25 (for CMV) and 50 uL (for HIV/MTB) of whole
blood. 100, 25 and 10 uL of whole blood from healthy donors with was
diluted 1:5 with R10 media and stimulated with 10 ng/mL
IFN-y or ten-fold dilutions of CMV whole cell lysate (10 uL/ml)(Sigma)
for 16 hours (a). 50 and 25 ul of whole blood diluted 1:5 with R10 media
were stimulated with 1, 5, 10, or 20 ul of 0.16 mg/ml ESAT-6 and CFP-10
peptide pools for 16 hours (b). Representative example of 50 pul of whole
blood taken from a HIV positive patient without symptoms suggestive of
active TB and an RD1 positive Elispot, diluted 1:5 with R10 media and
stimulated with ESAT-6 and CFP-10 (both at final concentrations of 8 ug/
ml) and HIV peptide pools (at a final concentration of 10 ug/ml).
doi:10.1371/journal.pone.0020606.g006
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sensitivity using only 25-50 uL. of blood means patient sampling
could take place in many more clinical settings, where such volumes
would be easily obtainable using a fingerprick. This includes field
studies, population screening and pediatric populations, although
clearly large scale clinical studies would be required to compare the
utility of such a test to established methodologies. Secondly, the
whole blood gPCR methodology could be easily implemented in a
number of labs, where the cellular immunological techniques
required for e.g. Elispot are not available. Thirdly, the assay is
highly flexible and can be stored at any stage after stimulation for
batching. Unlike direct assays like the Elispot, the cDNA may also
be reprobed for checking of data, or potentially for testing of novel
antigen-dependent transcripts. Finally, the ability to test both MIG
and IP10 with high sensitivity means that one chemokine could be
used as the main screening test, with the second as a confirmatory
test if necessary. Although we have focused on Tyl responses, the
same approach could also be applied using different reporters to the
sensitive detection of antigen-specific T2 cells involved in allergy
(e.g. IL-4 or 5 induced genes) and IL-10 or I1L-17 secreting T cells.
Even for Thl responses it is likely that there are other
transcriptional signals which could be identified which may surpass
the sensitivity and specificity of MIG and IP10 in whole blood and/
or PBMC and a genome-wide approach is in progress; by
comparison, analysis of IFNg upregulation by qPCR showed only
a limited response (typically <2 fold, data not shown), likely due to
dilution of the signals.

In conclusion, we provide evidence here for a novel approach to
the measurement of antigen specific T cells in human populations.
The qPCR assay approach is sensitive, robust and can be performed
on fingerprick quantities of whole blood. The technique’s broad
applicability and improved sensitivity would be highly useful in
studying infections such as Hepatitis C: Virus where T cell responses
are at or below threshold detection of conventional assays and
evaluating the efficacy of T cell inducing vaccines, such as those
currently in trials for malaria, TB and HIV. This assay therefore
possesses the potential to meet the urgent need for simple and robust
assays for T cell function.

Supporting Information

Figure S1 Higher MIG and IP10 expression in RDI1
Elispot positive individuals. MIG and IP10 expression as
measured by qPCR is significantly higher in patients who are also
positive by RD1 Elispot (P =0.0016, Mann-Whitney t-test) than in
patients who are negative by RD1 Elispot.

(TIFF)

Figure S2 qPCR assay is not affected by HIV-mediated
immunosuppression. MIG and IP10 production as measured
by qPCR is not affected by CD4 T cell count in frozen or fresh
PBMCs. MIG and IP10 expression in response to RD1 antigens
ESAT-6 and CFP-10 from thawed PBMCs from Active 'T'B patients
(a), thawed PBMCs from non-active (RD1+ and RD1-, active TB
excluded) (b) and fresh PBMCs of non-active and active T'B patients
(c). Correlation was insignificant (p>>0.05) for all of the analyses.
(TIFF)
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