An International Multispecialty Validation Study of the IgG4-Related Disease Responder Index

Zachary S. Wallace, Massachusetts General Hospital
Arezou Khosroshahi, Emory University
Mollie D. Carruthers, University of British Columbia
Cory A. Perugino, Massachusetts General Hospital
Hyon Choi, Massachusetts General Hospital
Corrado Campochiaro, Università Vita-Salute San Raffaele
Emma L. Culver, John Radcliffe Hospital
Frank Cortazar, Massachusetts General Hospital
Emanuel Della-Torre, Università Vita-Salute San Raffaele
Mikael Ebbo, La Timone University

Only first 10 authors above; see publication for full author list.

Proceedings Title: Arthritis Care and Research
Conference Name: Hoboken
Publisher: Wiley
Conference Place: United States
Volume/Issue: Volume 70 | Issue 11
Publication Date: 2018-11-01
Type of Work: Conference | Post-print: After Peer Review
Publisher DOI: 10.1002/acr.23543
Permanent URL: https://pid.emory.edu/ark:/25593/vf2zt

Final published version: http://dx.doi.org/10.1002/acr.23543

Copyright information:
© 2018, American College of Rheumatology
Accessed September 29, 2023 2:55 AM EDT
An International, Multi-Specialty Validation Study of the IgG4-
Related Disease Responder Index

Zachary S Wallace, MD¹, Arezou Khosroshahi, MD², Mollie D Carruthers, MD³, Cory A Perugino, DO¹, Hyon Choi, MD, Dr PH¹, Corrado Campochiaro, MD⁴, Emma L Culver, MD, PhD⁵, Frank Cortazar, MD⁶, Emanuel Dellatorre, MD⁴, Mikael Ebbo, MD⁷, Ana Fernandes, BA¹, Luca Frulloni, MD⁴, Philip Hart, MD⁹, Omer Karadag, MD⁸, Shigeyuki Kawa, MD, PhD¹⁰, Mitsuhiro Kawano, MD, PhD¹¹, Myung-Hwan Kim, MD, PhD¹², Marco Lanzillotta, MD¹³, Shoko Matsui, MD, PhD¹⁴, Kazuichi Okazaki, MD, PhD¹⁵, Jay H Ryu, MD¹⁶, Takako Saeki, MD, PhD¹⁷, Nicolas Schleinitz, MD, PhD¹⁸, Paula Tanasa, MD², Hisanori Umehara, MD, PhD¹⁹, George Webster, MD, PhD²⁰, Wen Zhang²¹, and John H Stone, MD, MPH¹

¹Rheumatology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA

²Division of Rheumatology, Emory University School of Medicine, Atlanta, GA

³Division of Rheumatology, University of British Columbia, British Columbia, Canada

⁴Unit of Medicine and Clinical Immunology, IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy

⁵Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK

⁶Renal Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA

⁷Department of Internal Medicine, La Timone University Hospital, Marseille

⁸Department of Gastroenterology, University of Verona, Verona, Italy

⁹Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, Ohio

¹⁰Hacettepe University Faculty of Medicine, Ankara, Turkey

¹¹Center for Health, Safety, and Environmental Management, Shinshu University, Matsumoto, Japan

¹²Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan

¹³Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea

¹⁴Health Administration Center, University of Toyama, Toyama, Japan

¹⁵The Third Department of Internal Medicine, Division of Gastroenterology and Hepatology, Kansai Medical University, Osaka, Japan

Corresponding Author: John H. Stone, MD, MPH, 55 Fruit Street / Yawkey 2C, Massachusetts General Hospital, Boston, MA 02114, jhstone@mgh.harvard.edu.
Abstract

Objective—IgG4-related disease (IgG4-RD) can cause fibro-inflammatory lesions in nearly any organ, leading to organ dysfunction and failure. The IgG4-RD Responder Index (RI) was developed to help investigators assess the efficacy of treatment in a structured manner. We sought to validate the RI in a multi-national investigation.

Methods—The RI guides investigators through assessments of disease activity and damage in 25 domains, incorporating higher weights for disease manifestations that require treatment urgently or that worsen despite treatment. After a training exercise, investigators reviewed 12 written IgG4-RD vignettes (mean length: 279 words, range: 76–511 words) based upon real patients. Investigators calculated both an RI score as well as a physician global assessment (PGA) for each vignette. Three investigators used the RI on fifteen patients followed over serial visits after treatment. We assessed inter- and intra-rater reliability, precision, validity, and responsiveness.

Results—Twenty-six physician-investigators included representatives from 6 specialties and 9 countries. The inter-rater and intra-rater reliabilities of the RI were strong (0.88 and 0.69, respectively) and superior to those of the PGA. Correlations (construct validity) between the RI and PGA were high (Spearman’s r=0.9, P<0.0001). The RI was sensitive to change (discriminant validity). Following treatment, there was significant improvement in the RI (mean change 10.5 (95% CI 5.4–12), P<0.001) which correlated with the change in the PGA. Urgent disease and damage were captured effectively.

Discussion—In this international, multi-specialty study, we found that the RI is a valid, and reliable disease activity assessment tool that can be used to measure response to therapy.

Introduction

IgG4-related disease (IgG4-RD) is a fibroinflammatory condition that can affect nearly any organ. Common manifestations include dacryoadenitis, chronic sclerosing sialoadenitis, autoimmune pancreatitis, tubulointerstitial nephritis, and retroperitoneal fibrosis. Untreated disease can lead to organ dysfunction, permanent organ injury (i.e., damage), and even death.

Disease activity in IgG4-RD is typically assessed using a combination of factors including findings in the history and on physical examination, the results of laboratory investigations,
and radiology studies. None of these factors alone, however, is sufficiently specific and sensitive from patient to patient (and across organ systems within individual patients) to permit reliance upon a single factor alone as a reflection of overall disease activity. As treatment options evolve, it is critical to establish a standardized instrument for measuring disease activity and damage that can be used in clinical trials. A useful instrument would be one capable of distinguishing disease activity from damage (e.g., changes unlikely to respond to treatment) which is essential to assessing treatment response. No widely validated activity index for IgG4-RD exists, although an earlier prototype was developed and partially validated at a single center.

The concept of the IgG4-RD RI is based upon an instrument developed to assess disease activity in another multi-organ inflammatory condition, granulomatosis with polyangiitis (formerly known as Wegener’s). That instrument, known as the Birmingham Vasculitis Activity Score for Wegener’s Granulomatosis, has been used as a disease activity assessment measure in multiple international clinical trials in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis.

Given the protean manifestations of IgG4-RD and its prevalence around the world, a tool understood and adopted by many types of specialists from all over the world is necessary. Moreover, given the variations in disease activity associated with IgG4-RD, an instrument capable of capturing ranges of activity with good precision is necessary. Thus, we developed the IgG4-RD responder index (RI) and assessed its validity in this study. In the interest of unifying disease status indices for IgG4-RD into a single index for both disease activity and disease-associated damage, we also incorporated assessments of organ-based damage.

Methods

Construction of the IgG4-RD RI

The IgG4-RD RI concept was based on that of the BVAS-WG, in which investigators assess disease activity organ by organ, with the sum of organ assessments summing to a total score. Disease activity (over the preceding 28 days) is determined by the investigator and reflects a patient’s symptoms attributable to active IgG4-RD as well as significant findings from the physical examination, imaging studies, and laboratory evaluations.

Organ Involvement—Investigators are guided through the scoring of disease activity and damage in twenty-four standard organs/sites (Table 1) but can also enter additional sites of involvement as free text. Constitutional symptoms (weight loss, fever, fatigue) comprise a 25th domain of disease activity.

Scoring Disease Activity—In the prototypical version of the instrument, disease activity in each organ or site was scored on a scale of 0 to 4, where 4 reflected the most severe disease activity (“Worsened or new disease despite treatment”) and 0 reflected no disease activity (Unaffected or “resolved”). A score of 1 represented “Improved but still persistent” disease activity, a score of 2 represented “Persistent/Unchanged from last visit” disease activity,” and a score of 3 represented “New or recurrent disease while off of treatment.” The
online exercise, which emphasized scoring patients only at one point in time, employed this scoring scheme.

Experience during this validation exercise, however, led to the realization that the original scoring scheme could suggest improvement in disease activity even if, in fact, the disease activity was unchanged. More specifically, in the event that a patient’s score within an individual organ went from 3 “New or recurrent disease while off treatment” to 2 “Persistent/unchanged from last visit,” the overall disease activity score would decline in the absence of true clinical improvement. Therefore, for the longitudinal exercise using real patients, the scoring levels were modified such that each level reflected a unique disease activity status within a given organ. The final scoring levels are as follows:

0 = Unaffected or resolved
1 = Improved but persistent
2 = New or recurrence (while off of treatment) or unchanged
3 = Worse or new (despite treatment)

This updated system was studied in the final stage of this study when discriminant validity was assessed across longitudinal visits in real clinic patients. A patient whose disease is scored as a 1 “Improved but persistent” continues to receive this score on subsequent visits if the disease persists (e.g., unresolved) but remains improved when compared to their pre-treatment baseline. This is to contrast it with a score of 2 where “unchanged” refers to no response to treatment.

In certain situations, IgG4-RD may necessitate urgent treatment to prevent serious or irreversible organ dysfunction. In such cases, the score for the organ or site is weighted higher by doubling it. This is described further in the IgG4-RI Manual of Operations (Online Supplement).

A common scoring scheme was used for each disease site, derived using an empiric approach. IgG4-RD can lead to myriad manifestations and within an individual organ disease severity can vary substantially. For instance, pulmonary nodules may be asymptomatic but a large pseudotumor could lead to dyspnea and other symptoms. Similarly, cervical lymphadenopathy may be asymptomatic or lead to significant discomfort (both physically and cosmetically) for a patient. As such, it is difficult to assign varying weights for each organ and therefore we elected to account for varying severity across organs by doubling the score for disease requiring “urgent” treatment.

Capturing Damage due to Disease—Organ damage refers to irreversible organ dysfunction (e.g., exocrine pancreatic insufficiency) or failure (e.g., chronic kidney disease) caused by IgG4-RD. Damage can also occur as a consequence of surgical interventions performed to diagnose or treat IgG4-RD (e.g., modified Whipple procedures, submandibular gland excisions). The presence or absence of damaged is assessed at each site in the RI. Damage caused by IgG4-RD itself must be distinguished from damage caused by IgG4-RD treatment which, in the context of a clinical trial, would be recorded separately as adverse events.
Capturing Symptomatic Disease—Although some IgG4-RD manifestations (e.g., submandibular gland sialoadenitis) are often symptomatic, others frequently occur in the absence of symptomatology (e.g., pulmonary nodules, lymphadenopathy). The RI permits the investigator to assess whether organ system disease is symptomatic or not within each organ system. Given that symptoms may be due to active disease or damage, the RI differentiates symptoms attributed to each.

Investigators
Forty clinicians representing diverse specialties (rheumatology, nephrology, immunology, pulmonology, general internal medicine, and gastroenterology) and with expertise in the diagnosis and treatment of IgG4-RD were invited to participate in the study. To ensure that this tool could be used by investigators around the world and for whom English is a second language, we invited experts from the USA, Japan, the UK, Canada, Italy, France, Turkey, China, and South Korea to participate.

Case Vignettes
We (JHS, ZSW, AK, MC, CAP) prepared 15 written cases describing patients with diverse manifestations of IgG4-RD. These vignettes included photographs of physical examination findings as well as images from radiology studies and biopsy specimens (Online Supplement). Three of the vignettes used in Phase 3 (see below) described a vignette patient’s follow-up after treatment to permit an assessment of responsiveness. Four cases described patients in remission. Five cases described patients with damage as a result of IgG4-RD (e.g., aortic dissection requiring repair) and five described patients with disease manifestations appropriately described as urgent. Cases with damage rather than disease activity were used to preliminarily assess discriminant validity.

Study Design
The study occurred in five phases. In the first four phases, all investigators received clinical vignettes and completed the RI as well as a physician global assessment (PGA) of disease activity on a 100mm scale for each case. The PGA was measured so that it could be used as a comparison for the RI as an assessment of disease activity. In phase five, the updated scoring version of the RI (see Scoring Disease Activity above) was employed along with the PGA and patient global assessment (PtGA) in a longitudinal manner in fifteen patients with newly-active IgG4-RD. The first four phases of this study were exempt from the Partners HealthCare Institutional Review Board (IRB). The fifth phases of this study were approved by the Partners HealthCare IRB.

Tutorial Exercise (Phase 1)—All investigators received a Manual of Operations (available in both English and Japanese; Online Supplement) describing the use of the RI (Translations of English versions into Japanese were performed by TransPerfect Life Sciences, Irvine, CA). The investigators were also invited to join an online Web-Ex for further instruction. All investigators received three practice clinical vignettes and completed an RI and PGA for each vignette. The clinical vignettes were also available in both English and Japanese (Translations of English versions into Japanese were performed by
TransPerfect Life Sciences, Irvine, CA). Scoring of these three cases was reviewed by two authors (ZSW and JHS) and investigators were given feedback regarding their performance.

Inter-Rater Reliability Validation Exercise (Phase 2)—Once the three practice clinical vignettes had been completed and reviewed, investigators received 12 new clinical vignettes and scored an RI and PGA for each one.

Responsiveness Exercise Using Vignettes (Phase 3)—Responsiveness was evaluated by all investigators using six (of the original 12 cases) written cases describing patients before (3 cases) and after (3 cases) treatment.

Intra-Rater Reliability (Test-Retest) Validation Exercise (Phase 4)—Three months after Phase 2, all investigators received three of the same clinical vignettes from Phase 2 and were asked to repeat their RI and PGA assessments. They were instructed to do so without referencing any notes from Phase 2.

Longitudinal Assessment of Real Patients (Phase 5)—Finally, three investigators employed the RI and PGA in 15 consecutive patients with newly-active disease who were started on treatment and followed longitudinally. The RI, PGA, and patient global assessment (PtGA) were assessed prospectively over six months.

Statistical Analysis

The intra- and inter-observer reliabilities of the RI and PGA were assessed using intra-class correlation coefficients (ICCs) using a previously described methodology that uses ANOVA to determine mean squares which are then used to calculate the ICC. The inter-observer variation (precision) was evaluated by applying the signed rank test to the differences between the coefficients of variation for the RI and PGA of each case. Using the responses to the paper cases, we evaluated construct validity by determining the correlation between the RI and the PGA using the Spearman’s rank correlation coefficient. Additionally, construct validity was assessed prospectively using repeated measures correlation to assess the longitudinal relationship of changes in the RI with changes in the PGA and PtGA. Responsiveness was assessed in two ways. First, for real patients followed longitudinally, RI scores before and 6 months after treatment were compared using a paired T-test. Second, for the clinical vignettes that required an investigator to score a patient’s RI and PGA before and after treatment, a paired T-test and correlation coefficient were measured, as above. The proportion of investigators reporting urgent disease and damage were tabulated. The modified Wald method was used to determine 95% confidence intervals for proportions.

SAS Version 9.3 (For all analyses unless otherwise noted), R Version 3.4.1 (Repeated measures correlation), and SPSS Version 24 (ICC determination) were used for all analyses.

Results

Investigators

Forty investigators were invited to participate in the study. Twenty-six physician-investigators participated in Phases 1, 2, and 3 and 20 participated in Phase 4. The
discriminant validity using real patients with longitudinal follow up (Phase 5) was completed by three investigators (JHS, ZSW, CP), all of whom are rheumatologists. In terms of investigators in Phases 1–3, there were 11 rheumatologists, 6 gastroenterologists, 4 immunologists, 2 pulmonologists, 2 nephrologists, and 1 internist. Investigators represented 9 different countries, including the USA, United Kingdom, Canada, Italy, France, Turkey, Japan, China, and South Korea.

Clinical Vignettes

The written case vignettes captured a variety of organ involvement, disease activity, and damage (Table 2). The average RI assessment for each case ranged from 0.07 (± 0.4) to 14.6 (± 2.8). Disease activity ranged from remission (e.g., history of retroperitoneal, submandibular, and parotid disease in case 12, RI=0), to mild/moderate (e.g., submandibular gland and lymph node involvement in case 4, RI=8), to severe (e.g., aortitis and pancreatitis in case 8, RI=14). In some cases, investigators were asked to properly distinguish damage from disease activity (e.g., case 2). The average PGA for each case ranged from 0.5 (± 2.1) to 79.7 (± 21.6).

Reliability

The RI had similar but higher inter-rater reliability to the PGA (0.89, 95% CI 0.80–0.96, vs. 0.88, 95% CI 0.77–0.96). The intra-rater (test-retest) reliability of the RI was and PGA were similar. The median ICC for the RI and PGA were 0.73 (range 0.32–0.92) and 0.74 (range 0.44–0.79), respectively.

Precision

To assess precision (inter-rater variation) of the RI and PGA, the coefficients of variation (CV) for the RI and PGA in each case were calculated and the differences in the CVs (DCVs) were determined for each case by subtracting the RI CV from the PGA CV (Table 3). The CV represents the level of agreement between raters for each case. Whereas a DCV value of zero would imply that the RI and PGA were equally precise, a positive value suggests lower variability (i.e., greater precision) of the RI compared with the PGA. The mean DCV for all cases was −0.4 (± 0.8, P=0.5), suggesting that the RI and PGA had approximately equal precision. For cases with very low or absent disease activity, the CV tended to be higher, suggesting that some investigators equated complete remission with a low RI or PGA rather than a zero.

Correlation (Convergent Validity)

We evaluated the correlation between the RI and PGA using the RIs and PGAs calculated in Phase 1. When all cases were included, the RI and PGA had high correlation (Spearman’s r=0.9, P< 0.0001). When cases with no disease activity (Cases 2, 9, 10, and 12) as well as very low disease activity (Case 7) were excluded – because of the potential for inflated correlations in such cases – correlation remained high (Spearman’s r=0.6, P<0.0001). We also assessed the correlation between the RI, PGA, and PtGA prospectively in treated patients. There was strong correlation (r=0.81, 95% CI: 0.74–0.86, P<0.001) between the RI...
and PGA over repeated assessments. Similarly, there was significant correlation ($r=0.26$, 95% CI: 0.09–0.42, $P=0.003$) between the RI and the PtGA (Table 4).

Responsiveness

Based on a review of six vignettes that described three unique cases before and after treatment, both the RI and PGA showed good discriminant validity. There were significant differences by paired T-tests and correlation between changes in the RI and PGA before and after treatment (Table 4). In clinic, three investigators assessed fifteen patients before and 6 months after treatment. The PGA and the RI showed good responsiveness in the clinical setting (Table 4).

Urgent Disease and Damage

In the clinical vignettes, there were five cases in which organ damage had occurred as a result of IgG4-RD and five cases which required urgent treatment. Damage was correctly identified, on average, 86% of the time. Urgent disease was correctly identified, on average, 76% of the time, indicating that the RI is able to discriminate between active disease and damage (discriminant validity, Table 5).

Discussion

In this international, multi-specialty validation study, we demonstrated that the IgG4-RD RI is a practical, reliable, and responsive means of assessing and recording disease activity and damage. Our findings also support the validity of the RI. The RI, the first tool of its kind in IgG4-RD, will be instrumental in future clinical trials and other types of studies in this disease. The RI demonstrated strong inter- and intra-rater reliabilities. In addition, the precision of the RI was similar to that of the PGA and the two types of assessments were highly correlated both cross-sectionally and prospectively, supporting the instrument’s validity as an assessment of disease activity. In longitudinal assessments of patients, we also demonstrated that the RI has good responsiveness, indicating sensitivity to changes in disease activity over serial visits following treatment. The RI was able to appropriately differentiate disease activity from damage (discriminant validity).

As in other systemic illnesses, there are many potential ways of measuring disease activity, including findings on the history and physical examination, the results of laboratory studies, and the interpretation of imaging abnormalities. The ideal instrument for assessing disease activity, however, accommodates a broad diversity of organ system involvement, variation in resource availability, and other factors specific to both IgG4-RD and to individual patients. Although several types of biomarkers have been proposed in IgG4-RD (e.g., serum IgG4 concentrations, circulating plasmablast levels, and complement concentrations), none of these measures is sufficiently sensitive or specific for disease activity. The clinical context of these measurements must be interpreted by an investigator in order to make proper attributions of their implications for disease activity and treatment decisions. Thus, a cognitive tool such as the RI that allows the investigator to consider information from a variety of sources and distill these parts into a sum of disease activity and damage reflected in individual organ manifestations is critical to IgG4-RD, as in other multi-organ conditions.
An earlier version of the RI5 included a scoring domain for the serum IgG4 concentration, but greater experience with IgG4-RD led to the removal of this domain because many patients in remission never achieve a normal serum IgG4 concentration or do not do so within a timeframe that is appropriate for clinical trials.13 However, the serum IgG4 concentration may be an important reflection of disease activity for an individual patient; this may be considered by a provider when assessing disease activity.

Longitudinal use of the RI in real patients in this study led to practical insights on the appropriate application of the instrument in clinical trials. We deleted one scoring level from the initial version of the RI because its inclusion had the potential to indicate falsely that a patient’s disease activity had improved over the baseline assessment, regardless of whether or not true clinical improvement had actually occurred. Phase 5 of the study, application of the RI in real patients on a longitudinal basis, employed the updated scoring system.

Successful application of the RI, which may appear deceptively simple, requires substantial clinical experience and judgment in order to address both the protean nature of IgG4-RD and the RI’s subtleties. It is crucial, for example, to distinguish active IgG4-RD within a specific organ from damage that occurred to that same organ from previously active but now quiescent disease. It is also possible that both active disease and damage can co-exist at the same time in a given organ, a fact that requires clinical acumen to discern and record appropriately. The findings from this validation study indicate that following appropriate training, investigators from many different countries, speaking many different primary languages, and representing an array of medical specialties can all use the RI successfully. When using the RI in the context of a clinical trial, thorough pre-trial training and assessments of the investigators will be required, as performed in the context of this validation study.

The most common challenge faced by investigators during the training phase of this study was distinguishing disease activity and damage due to IgG4-RD. This distinction is critical because damage is not expected to respond to treatment. The erroneous attribution of clinical manifestations resulting from damage to active IgG4-RD leads inevitably to incorrect conclusions regarding treatment efficacy. The investigators reported damage correctly in 86% of the scenarios described in this study, including damage related to surgical procedures required to establish the diagnosis of IgG4-RD. The design of the RI includes the concept that any surgical intervention beyond a fine needle aspiration should be considered damage, given that such procedures pose a risk to patients and, at the least, leave patients with scars. Future studies will focus on defining, assessing, and reporting damage due to IgG4-RD.

The RI assigns a higher weight (two-fold) to urgent disease to reflect the greater severity of certain manifestations of IgG4-RD. Urgent disease refers specifically to the need to begin treatment immediately for certain manifestations in order to prevent irreversible damage of an organ or site. For example, a patient with an aortic dissection due to IgG4-RD requires urgent management of their disease. Given that investigators identified urgent disease correctly only 76% of the time, future studies will address sources of disagreement to improve guidelines. Despite this, the RI was found to be a reliable and precise tool for the...
assessment of disease activity. To assist providers using the RI, we have provided additional details regarding damage and urgent disease in an online supplement.

IgG4-RD is a protean disease with wide variations in disease activity which we sought to capture in this study. To maximize participation among investigators we had to balance the number of clinical vignettes we asked them to review with the reality that asking investigators to review too many cases would discourage participation. We chose cases that were representative of the IgG4-RD spectrum of disease, including various organ sites and combinations of disease activity, symptoms, urgent disease, and damage. Further, we chose clinical scenarios that required investigators to use a variety of tools to assess disease activity. Less commonly affected disease sites (e.g., pituitary, meninges) were not included in the clinical vignettes but we have no reason to suspect that investigators would have difficulty assessing disease activity in these sites given their ability to do so in other sites (e.g., aorta, biliary, lung) which also rely on imaging along with other factors (e.g., physical exam) to assess disease activity.

Our study has potential weaknesses. These relate primarily to the challenges of recording subtle gradations of disease activity in a multi-organ condition in which degrees of activity do not necessarily fall into discrete levels from visit to visit. Some disease manifestations of IgG4-RD require imaging to gauge the level of improvement or worsening. If a disease manifestation cannot be assessed with certainty without follow-up imaging, then that manifestation should be scored a “2” to reflect that concept that as far as the investigator knows – while awaiting imaging – the manifestation is unchanged from the previous visit. Because of the need in some cases to await imaging, the recording of improvement or worsening on the RI may lag behind the true clinical state in these situations. This fact, however, reflects the realities of clinical practice. An additional limitation was that cases in which disease improved but did not resolve were under-represented in clinical vignettes. However, we have no reason to believe that clinicians would be unable to distinguish improvement (but persistent disease) from remission and worsening disease activity. Additionally, the ability to distinguish remission, damage, and disease activity, as demonstrated in this study, is critical for the use of the RI in an IgG4-RD clinical trial and was a priority in this study. Finally, intra-rater reliability was lower than the inter-rater reliability which was unexpected. However, we suspect that this is related to suboptimal power given that investigators were asked to only re-analyze three cases. Future studies in the clinical setting will be able to address these limitations.

Despite these challenges, changes in the RI over time should correspond either to disease flares – clear worsenings of disease activity that lead to increases in treatment – or to improvement, corresponding to less need for therapy. In this way, the RI should justify alterations in therapy that occur over the course of a clinical trial, and the instrument offers a means of checking investigators’ decisions to escalate therapy.

In summary, in this international validation study of an RI for IgG4-RD, we found the RI to be a reliable, responsive, and valid instrument with which to measure disease activity and record disease-associated damage, regardless of the manifestation or specialist managing the case. The RI will be an important tool in monitoring disease activity in clinical trials.
Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was funded by a Scientist Development Award from the Rheumatology Research Foundation (ZSW), a National Institutes of Health Loan Repayment Award (ZSW), National Institute of Arthritis, Musculoskeletal, and Skin Diseases Training Grant (T32- AR007258) (ZSW), and Xencor.

References

Significance & Innovation

IgG4-related disease (IgG4-RD) is an emerging multi-organ inflammatory condition now recognized by the American College of Rheumatology (ACR) as a unique disease. A Classification Criteria effort funded by the ACR the European League Against Rheumatism (EULAR) is now in the validation stage. IgG4-RD is diagnosed all over the world now, and international collaborations have led to consensus publications on nomenclature, pathology findings, and management approach. The stage is set for multi-center clinical trials that will likely be international in scope. The IgG4-RD Responder Index has been developed as a clinical trials assessment tool designed for use in evaluating disease activity in a systematic manner. This validation study has engaged investigators from North America, Asia, Europe, and South America in the interest of facilitating international collaboration on treatment outcomes in this disease.
Table 1
Potential Disease Activity Captured in the IgG4-RD Responder Index (RI)

<table>
<thead>
<tr>
<th>Meninges</th>
<th>Pituitary Gland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbital Lesion</td>
<td>Lacrimal Gland</td>
</tr>
<tr>
<td>Parotid Gland</td>
<td>Submandibular Gland</td>
</tr>
<tr>
<td>Other Salivary Gland *</td>
<td>Mastoiditis/Middle Ear Disease</td>
</tr>
<tr>
<td>Nasal Cavity Lesion</td>
<td>Sinusitis</td>
</tr>
<tr>
<td>Other ENT Lesion *</td>
<td>Thyroid</td>
</tr>
<tr>
<td>Lung</td>
<td>Lymph Node *</td>
</tr>
<tr>
<td>Aorta/Large Blood Vessel</td>
<td>Heart/Pericardium</td>
</tr>
<tr>
<td>Retroperitoneal Fibrosis</td>
<td>Sclerosing Mediastinitis</td>
</tr>
<tr>
<td>Sclerosing Mesenteritis</td>
<td>Pancreas</td>
</tr>
<tr>
<td>Liver</td>
<td>Bile Duct</td>
</tr>
<tr>
<td>Kidney</td>
<td>Skin</td>
</tr>
<tr>
<td>Constitutional Symptoms (Weight Loss, Fever, Fatigue due to IgG4-RD)</td>
<td>Other *</td>
</tr>
</tbody>
</table>

* Provides free-text space for investigator to capture disease activity not captured elsewhere (e.g., breast, prostate);

^ Asks investigator to specify region of lymphadenopathy (e.g., mediastinal)
Table 2

Clinical Vignette Descriptions

<table>
<thead>
<tr>
<th>Case</th>
<th>Organs/Sites of Involvement</th>
<th>Constitutional Symptoms</th>
<th>Active Disease</th>
<th>Organs/Sites of Active Disease</th>
<th>Urgent Disease</th>
<th>Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Biliary, Lung, Orbit, Renal</td>
<td>Yes</td>
<td>Yes</td>
<td>Renal</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Aorta, LAD</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Orbital, Lacrimal, Parotid, Skin</td>
<td>No</td>
<td>Yes</td>
<td>Orbital, Lacrimal, Skin</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>LAD, SG</td>
<td>No</td>
<td>Yes</td>
<td>LAD, SG</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>Lacrimal, Orbit, LAD, Lung, Pre-splenic mass</td>
<td>No</td>
<td>Yes</td>
<td>Lacrimal, LAD, Lang, Pre-splenic mass</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>Orbit, Lacrimal</td>
<td>No</td>
<td>Yes</td>
<td>Orbit, Lacrimal</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Follow up of case 6</td>
<td>No</td>
<td>Yes *</td>
<td>Orbit, Lacrimal</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>Aorta, LAD, Pancreas</td>
<td>No</td>
<td>Yes</td>
<td>Aorta, LAD, Pancreas</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>Follow up of case 8</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Orbit, Parotid</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>RP, Parotid, SG</td>
<td>No</td>
<td>Yes</td>
<td>RP, Parotid, SG</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Follow up of case 11</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

N/A = Not applicable; RP = Retroperitoneum; SG = Submandibular gland; LAD = Lymphadenopathy;

* Disease was improved
Table 3

Precision of the IgG4-RD Responder Index and Physician Global Assessment

<table>
<thead>
<tr>
<th>Case</th>
<th>Mean (SD) RI</th>
<th>RI CV</th>
<th>Mean (SD) PGA</th>
<th>PGA CV</th>
<th>DCV^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.0 (1.2)</td>
<td>13.3</td>
<td>68.0 (15.9)</td>
<td>23.4</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2 (0.5)</td>
<td>301.7</td>
<td>4.8 (11)</td>
<td>230.5</td>
<td>-0.7</td>
</tr>
<tr>
<td>3</td>
<td>11.4 (2.8)</td>
<td>24.7</td>
<td>63.9 (18)</td>
<td>28.2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>8.2 (2.4)</td>
<td>28.6</td>
<td>55.2 (16.6)</td>
<td>30.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>14.6 (2.8)</td>
<td>19.0</td>
<td>76.8 (14.7)</td>
<td>19.1</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>8.5 (3.4)</td>
<td>39.5</td>
<td>56.8 (22.3)</td>
<td>39.2</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.1 (0.4)</td>
<td>509.9</td>
<td>0.5 (2.1)</td>
<td>386.8</td>
<td>-1.2</td>
</tr>
<tr>
<td>8</td>
<td>13.8 (4.6)</td>
<td>33.1</td>
<td>79.7 (21.6)</td>
<td>27.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>9</td>
<td>0.1 (0.4)</td>
<td>509.9</td>
<td>2.6 (6.6)</td>
<td>255.3</td>
<td>-2.5</td>
</tr>
<tr>
<td>10</td>
<td>0.5 (1.0)</td>
<td>205.9</td>
<td>5.8 (11.1)</td>
<td>191.9</td>
<td>-0.1</td>
</tr>
<tr>
<td>11</td>
<td>14.9 (2.2)</td>
<td>15.0</td>
<td>72.0 (15.9)</td>
<td>22.1</td>
<td>0.1</td>
</tr>
<tr>
<td>12</td>
<td>0.2 (0.4)</td>
<td>186.2</td>
<td>5.3 (10.2)</td>
<td>193.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Mean (SD) −0.4 (0.8)*

SD = Standard Deviation; CV = Coefficient of Variation; DCV = Difference of CV (PGA CV – RI CV);

^ CV was divided by 100 to calculate DCV;

*P=0.5
Table 4

Discriminant Validity of the RI and PGA

<table>
<thead>
<tr>
<th>Case</th>
<th>Mean Difference (SD) in RI</th>
<th>P-Value*</th>
<th>Mean Difference (SD) in PGA</th>
<th>P-Value*</th>
<th>Correlation*</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.4 (7.0–9.9)</td>
<td><0.0001</td>
<td>56.2 (46.7–65.7)</td>
<td><0.0001</td>
<td>0.6 (0.2–0.8)</td>
<td>0.0003</td>
</tr>
<tr>
<td>2</td>
<td>13.8 (11.8–15.7)</td>
<td><0.0001</td>
<td>77 (67.7–86.1)</td>
<td><0.0001</td>
<td>0.5 (0.2–0.8)</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>14.6 (13.6–15.6)</td>
<td><0.0001</td>
<td>65.9 (57.9–73.9)</td>
<td><0.0001</td>
<td>0.5 (0.07–0.7)</td>
<td>0.02</td>
</tr>
<tr>
<td>Clinical Series</td>
<td>10.5 (6.5–14.6)</td>
<td><0.0001</td>
<td>41.4 (31.1–51.7)</td>
<td><0.0001</td>
<td>0.81 (0.7–0.9)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

* Paired T-test;
^ Tested the correlation of the difference in the RI and PGA before and after treatment for the paper cases and used repeated measure correlation analysis for the longitudinal assessment;
SD=Standard Deviation
Table 5

Proportion Correctly Identifying Damage and Urgent Disease

<table>
<thead>
<tr>
<th>Case</th>
<th>Proportion (95% CI) Correctly Classifying Damage</th>
<th>Proportion (95% CI) Correctly Classifying Urgent Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/A</td>
<td>Renal: 96% (80%–99.9%)</td>
</tr>
<tr>
<td>2</td>
<td>Lymph Node: 54% (35%–71%) Aorta: 96% (80%–99.9%)</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>N/A</td>
<td>Orbit: 57.7% (39%–75%)</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>Lung: 62% (43%–78%)</td>
</tr>
<tr>
<td>8</td>
<td>Aorta: 85% (66%–95%)</td>
<td>Aorta: 85% (66%–95%)</td>
</tr>
<tr>
<td>9</td>
<td>Aorta: 96% (80%–99.9%) Pancreas: 92% (75%–99%)</td>
<td>N/A</td>
</tr>
<tr>
<td>10</td>
<td>Orbit: 92% (75%–99%)</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>N/A</td>
<td>RPF: 81% (62%–92%)</td>
</tr>
<tr>
<td>12</td>
<td>RPF: 88% (70%–97%)</td>
<td>N/A</td>
</tr>
</tbody>
</table>