Corrigendum: The Spectrum of SPTA1-Associated Hereditary Spherocytosis

Satheesh Chonat, Emory University
Mary Risinger, University of Cincinnati
Haripriya Sakthivel, Cincinnati Children's Hospital Medical Center
Omar Niss, Cincinnati Children's Hospital Medical Center
Jennifer A. Rothman, Duke University
Loan Hsieh, CHOC Children's Hospital
Stella T. Chou, Children's Hospital of Philadelphia
Janet L. Kwiatkowski, Children's Hospital of Philadelphia
Eugene Khandros, Children's Hospital of Philadelphia
Matthew F. Gorman, Kaiser Permanente

Only first 10 authors above; see publication for full author list.

Journal Title: Frontiers in Physiology
Volume: Volume 10
Publisher: Frontiers Media | 2019-10-18, Pages 1331-1331
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3389/fphys.2019.01331
Permanent URL: https://pid.emory.edu/ark:/25593/v48zt

Final published version: http://dx.doi.org/10.3389/fphys.2019.01331

Copyright information:
© Copyright © 2019 Chonat, Risinger, Sakthivel, Niss, Rothman, Hsieh, Chou, Kwiatkowski, Khandros, Gorman, Wells, Maghathe, Dagaonkar, Seu, Zhang, Zhang and Kalfa.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed February 5, 2020 11:49 PM EST
Corrigendum: The Spectrum of SPTA1-Associated Hereditary Spherocytosis

Satheesh Chonat 1,2, Mary Risinger 3, Haripriya Sakthivel 4, Omar Niss 4,5, Jennifer A. Rothman 6, Loan Hsieh 7, Stella T. Chou 6,8, Janett L. Kwiatkowski 6,9, Eugene Khandros 8,9, Matthew F. Gorman 10, Donald T. Wells 11, Tamara Maghathe 4, Neha Dagaonkar 12, Katie G. Seu 4, Keijan Zhang 13, Wenying Zhang 5,14 and Theodosia A. Kalfa 4,5

1 Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States, 2 Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States, 3 College of Nursing, University of Cincinnati, Cincinnati, OH, United States, 4 Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 5 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States, 6 Duke University Medical Center, Durham, NC, United States, 7 Division of Hematology, CHOC Children’s Hospital and UC Irvine Medical Center, Orange, CA, United States, 8 Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States, 9 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States, 10 Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA, United States, 11 Dell Children’s Medical Center, Austin, TX, United States, 12 Genomics Analysis Facility, Institute for Genomic Medicine, Columbia University, New York, NY, United States, 13 Coyote Bioscience Co., Ltd., San Jose, CA, United States, 14 Laboratory of Genetics and Genomics, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States

Keywords: SPTA1, α-spectrin, αLEPRA, hereditary spherocytosis, next generation sequencing, hemolytic anemia, hydrops fetalis

A Corrigendum on

The Spectrum of SPTA1-Associated Hereditary Spherocytosis

In the original article, there was a mistake in Table 1 as published. The SPTA1 mutation of Allele 2 in Patient 1, is stated as “c.4294T>A (p.L1432∗).” The correct mutation should read “c.4295del (p.L1432∗).” The corrected Table 1 appears below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

REFERENCES

Copyright © 2019 Chonat, Risinger, Sakthivel, Niss, Rothman, Hsieh, Chou, Kwiatkowski, Khandros, Gorman, Wells, Maghathe, Dagaonkar, Seu, Zhang, Zhang and Kalfa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
TABLE 1 | Genetic mutations and associated phenotype in HS due to SPTA1 mutations.

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Patient</th>
<th>Allele 1</th>
<th>Allele 2</th>
<th>Age at time of report and comments</th>
<th>Ektacytometry</th>
<th>α-spectrin in RBC ghosts (%) of control</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUP I (patients 1–4) Severe, recessive HS (transfusion-dependent, responding to splenectomy)</td>
<td>1</td>
<td>c.4339-99C > T c.4295del (p.L1432*)</td>
<td></td>
<td>11 year-old, chronic transfusion requirement with partial response to partial splenectomy, resolved after total splenectomy</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>c.4339-99C > T c.5102A > T (p.L1701*)</td>
<td></td>
<td>7 year-old, chronic transfusion requirement, improved with partial splenectomy</td>
<td>64%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>c.4339-99C > T c.3267A > T (p.L1089*)</td>
<td></td>
<td>11 year-old, not splenectomized due to family preference, continues to require frequent transfusions</td>
<td>Not evaluable in a transfused sample</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Mutation not identified Gross deletion of SPTA1</td>
<td></td>
<td>3.5 year-old, RT-PCR demonstrated significantly decreased α-spectrin expression; hemoglobin has normalized after recent splenectomy</td>
<td>Not evaluable in a transfused sample</td>
<td></td>
</tr>
<tr>
<td>GROUP II (patients 5–8) Severe to moderately severe, recessive HS</td>
<td>5</td>
<td>c.4339-99C > T c.1120C > T (p.R374*)</td>
<td></td>
<td>4 year-old, chronic transfusion requirement for first three years with improved pattern since.</td>
<td>Sample not provided after age 3, when transfusion-independent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>c.4339-99C > T c.1351-1G > T</td>
<td></td>
<td>7 year-old, occasional transfusion requirement, resolved after splenectomy at 5 years of age</td>
<td>59%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>c.4339-99C > T c.2671C > T (p.R891*)</td>
<td></td>
<td>4 year-old, has not been transfused so far, Hgb 7.1-8.9 g/dL, ARC 420-572 x 10^3/µl.</td>
<td>61%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>c.4339-99C > T c.3257delT</td>
<td></td>
<td>8 year-old, transfused once as neonate, Hgb 10.6–11.9 g/dL, ARC 354–635 x 10^3/µL, now Hgb 15–16 g/dL with normal ARC after splenectomy at 6 years of age (splenectomy performed because of chronic abdominal pain due to co-morbidities)</td>
<td>Not performed.</td>
<td></td>
</tr>
<tr>
<td>GROUP III (patients 9–11) Life-threatening anemia in utero leading to fatal hydrops fetalis if untreated (transfusion-dependent, not responding to splenectomy)</td>
<td>9</td>
<td>c.4206delG (fs) c.4180delT (fs) in haplotype with c.6631C > T (p.R2211C)</td>
<td></td>
<td>Died at birth. Post-mortem diagnosis from parental studies and DNA extracted from liver tissue saved in paraffin block</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>c.6788+11C > T c.6788+11C > T</td>
<td></td>
<td>11 year-old, born prematurely at EGA of 33 weeks with hydrops fetalis, remained transfusion-dependent even after splenectomy; now doing well after matched sibling transplant</td>
<td>Not evaluable in a transfused sample (required chronic transfusions up until bone marrow transplant) 26% (performed in CD71+ cells)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>c.6154del (p.Ala2052fs) c.6154del (p.Ala2052fs)</td>
<td></td>
<td>2 year-old, severe in-utero anemia requiring five in-utero transfusions. Born with severe neonatal hyperbilirubinemia requiring exchange transfusion. Remains transfusion-dependent</td>
<td>Not evaluable in a transfused sample</td>
<td></td>
</tr>
</tbody>
</table>

Of note, all the SPTA1 variants reported here except c.4339-99C > T (αLEPRA) and c.2671C > T; p.R891* (Bogardus et al., 2014) have not been previously described.