About this item:

647 Views | 427 Downloads

Author Notes:

To whom correspondence should be addressed. snie@emory.edu

Subjects:

Research Funding:

National Cancer Institute : NCI

This work was supported by grants from the NCI Centers of Cancer Nanotechnology Excellence(CCNE)Program(U54CA119338) and the Bioengineering Research Partnerships Program (BRP) (R01CA108468). S.N. is a Distinguished Cancer Scholar of the Georgia Cancer Coalition (GCC).

Multiplexed Detection and Characterization of Rare Tumor Cells in Hodgkin's Lymphoma with Multicolor Quantum Dots

Tools:

Journal Title:

Analytical Chemistry

Volume:

Volume 82, Number 14

Publisher:

, Pages 6237-6243

Type of Work:

Article | Post-print: After Peer Review

Abstract:

The multicolor and multiplexing capabilities of semiconductor quantum dots (QDs) are most promising for improving the sensitivity and specificity of in vitro molecular and cellular diagnostics. Here, we report the use of multiplexed QDs and wavelength-resolved imaging to detect and characterize a class of low-abundant tumor cells in Hodgkin’s lymphoma. Known as the Hodgkin’s and Reed-Sternberg (HRS) cells, this class of malignant cells is a pathological hallmark in clinical diagnosis, but it comprises only about 1% of the heterogeneous infiltrating cells in lymph node tissues. To overcome this cellular heterogeneity and rarity problem, we have developed multicolor QD–antibody conjugates to simultaneously detect a panel of four protein biomarkers (CD15, CD30, CD45, and Pax5) directly on human tissue biopsies. This multiplexing approach allows rapid detection and differentiation of rare HRS cells from infiltrating immune cells such as T and B lymphocytes. We have also carried out clinical translation studies involving six confirmed Hodgkin’s lymphoma patients, two suspicious lymphoma cases, and two patients with reactive lymph nodes (but not lymphoma). The results indicate that a distinct QD staining pattern (CD15 positive, CD30 positive, CD45 negative, and Pax5 positive) can be used to not only detect Hodgkin’s lymphoma but also differentiate it from benign lymphoid hyperplasia.

Copyright information:

© 2010 American Chemical Society

Export to EndNote