ANALYSIS OF DEPENDENTLY CENSORED DATA BASED ON QUANTILE REGRESSION

Shuang Ji\(^1\), Limin Peng\(^2\), Ruosha Li\(^3\), and Michael J. Lynn\(^2\)

\(^1\)Division of Biostatistics, University of Texas Health Science Center
\(^2\)Department of Biostatistics and Bioinformatics, Emory University
\(^3\)Department of Biostatistics, University of Pittsburgh

Abstract

Dependent censoring occurs in many biomedical studies and poses considerable methodological challenges for survival analysis. In this work, we develop a new approach for analyzing dependently censored data by adopting quantile regression models. We formulate covariate effects on the quantiles of the marginal distribution of the event time of interest. Such a modeling strategy can accommodate a more dynamic relationship between covariates and survival time compared to traditional regression models in survival analysis, which usually assume constant covariate effects. We propose estimation and inference procedures, along with an efficient and stable algorithm. We establish the uniform consistency and weak convergence of the resulting estimators. Extensive simulation studies demonstrate good finite-sample performance of the proposed inferential procedures. We illustrate the practical utility of our method via an application to a multicenter clinical trial that compared warfarin and aspirin in treating symptomatic intracranial arterial stenosis.

Keywords

Copula model; Dependent censoring; Empirical process; Martingale; Regression quantile

1. Introduction

In survival analysis, a commonly adopted assumption is noninformative censoring, which is, the time to censoring is independent of the event time of interest given covariates if any. However, this assumption may not be valid in many practical situations. A good example comes from the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) study, the first clinical trial that compared warfarin and aspirin in treating atherosclerotic intracranial arterial stenosis (Chimowitz, Lynn, Howlett-Smith, Stern, Hertzberg, Frankel, Levine,
Chaturvedi, Kasner, benesch, Sila, Jovin, and Romano, 2005). In this trial, the primary endpoint was ischemic stroke, brain hemorrhage, or death from vascular causes other than stroke. Of note, study medications were terminated early for 125 patients out of the total 569 patients due to various disease-related reasons, such as adverse events and changes in health conditions. It is questionable to believe that these withdrawals are independent of the disease endpoints of interest. In addition, 44 withdrawals occurred in the aspirin arm and 81 in the warfarin arm. Such an unbalanced allocation can amplify the estimation bias for treatment effect caused by falsely treating withdrawals as independent censoring (Huang and Zhang, 2008). These considerations necessitate properly adjusting for dependent censoring.

By viewing the occurrence of dependent censoring as one type of failure, we may formulate the survival data subject to dependent censoring as competing risks data. As a result, the dependent censoring problem may be tackled by employing techniques for handling competing risks, which are generally classified into two categories (Kalbfleisch and Prentice, 2002): (a) approaches based on the crude quantities, such as the cause-specific hazard and the cumulative incidence function, which reflect the failure process in the presence of the competing risks; (b) methods that focus on the net quantities, for example, the marginal distribution function, which hypothesize the removal of the competing risks. When dependent censoring is caused by events that preclude the observation of but not the development of the endpoint of interest, such as the informative withdrawals in the WASID study, the latter type of approach may be preferred because it would produce inference which corresponds to the setting without interruption of the observation process and hence may be of more scientific relevance.

There has been rich literature on competing risks approaches based on net quantities. As a common feature of this type of methods, additional assumptions on the relationship among times to distinct failure types are required because the marginal and joint distributions are not nonparametrically identifiable (Tsiatis, 1975). For example, in the one-sample case, much previous work with dependently censored data restricts the joint distribution using either semiparametric or parametric models (Link, 1989; Emoto and Matthews, 1990, among others). Due to lack of sufficient information to verify the assumed dependence structure, performing a sensitivity analysis (Peterson, 1976; Slud and Rubinstein, 1983; Klein and Moeschberger, 1988; Zheng and Klein, 1995; Scharfstein, Robins, Eddings, and Rotnitzky, 2001; Scharfstein and Robins, 2002, among others) has been advocated to yield bounds for the estimands of interest under various plausible assumptions on the joint distribution of the event time and the censoring time.

The general regression setting is the focus of this work. Among existing work, Huang and Zhang (2008) extended Zheng and Klein (1995)’s approach to a bivariate Cox proportional hazards model, where the joint distributions of competing risks are linked to their marginal distributions through a known copula. More recently, Chen (2010) developed a non-parametric maximum likelihood approach for a general class of semiparametric transformation models, similarly assuming a copula model to address the identifiability issue. Both of these regression methods base inference on models that only allow for constant effects, which may not be adequate in many real datasets (Kaslow, Ostrow, Detels, Phair, Polk, and Rinaldo, 1987; Dickson, Grambsch, Fleming, Fisher, and Langworthy, 1987).

In this work, we propose a new regression method for dependently censored data based on quantile regression modeling (Koenker and Bassett, 1978). By its flexibility to accommodate varying covariate effects, quantile regression can often provide useful scientific insight that cannot be uncovered by traditional regression models with constant effects (Peng and Huang, 2008; Peng and Fine, 2009). While substantial work has been devoted to develop quantile regression methods for survival data with known censoring times or independent censoring times (Powell, 1984, 1986; Ying, Jung, and Wei, 1995; Yang, 1999; Honore, Khan, and Powell, 2002; Portnoy, 2003; Peng and Huang, 2008; Wang and Wang, 2009; Huang, 2010, among others), to the best of our knowledge, little work has been done to accommodate the survival scenarios with dependent censoring. Peng and Fine (2009) proposed a quantile regression method for competing risks data based on the cumulative incidence function, which cannot be applied to draw inference on net quantities as desired in the WASID study.

Specifically, we assume linear quantile regression models for both the event time and the dependent censoring time. To address the identifiability issue, we specify the dependence structure between the event time and the dependent censoring time by a copula model, as in Huang and Zhang (2008) and Chen (2010). We utilize the martingales associated with the cause-specific hazards to construct unbiased estimating equations for the assumed models, following the spirit of Peng and Huang (2008)’s work. Nevertheless, the current estimation setting involves more delicate issues with the identifiability of upper tail quantiles due to censoring. Furthermore, technical challenges are more pronounced than those in the independent censoring case, largely due to the dependent entanglement of event time and censoring time. In the proposed estimation procedure, we apply a proper “truncation” technique to avoid the estimation of upper tail quantiles. With sophisticated use of theory in empirical processes and stochastic integral equations, we are able to establish asymptotic properties of the proposed estimators including uniform consistency and weak convergence. We also develop an efficient and stable iterative algorithm to solve the proposed estimating equations. We present the detailed method along with the asymptotic results in Section 2. In Section 3 we report results from extensive simulation studies. An application to the WASID study is presented in Section 4 to illustrate the practical utility of our method. In Section 5, we conclude this paper with a few remarks.

2. Methods

2.1. Data and Model

Let T denote the failure time, D denote time to dependent censoring, and C be an additional independent censoring time. Let Z be a $p \times 1$ covariate vector. Define $T = T \wedge D, X = T \wedge C$, and $Z = (1, Z^T)$. Let $\delta = I(T \leq C)$. The censoring indicator is defined as $\delta = \delta \wedge D \leq D$, and $\delta = 2\delta$ if $D < T$. The observed data consist of n replicates of (X, δ, Z), denoted by $\{(X_i, \delta_i, Z_i), i = 1, \ldots, n\}$.
Define the conditional τ-th quantile of a random variable Y given Z by $Q_T(\tau|Z) = \inf\{t : F_Y(t|Z) \geq \tau\}$, where $F_Y(t|Z) = \Pr(Y \leq t|Z)$. We consider the quantile regression model for T and D that take the following forms,

$$Q_T(\tau|Z) = g\{Z^T \beta_0(\tau)\}, \quad \tau \in (0, 1), \quad (2.1)$$

$$Q_D(\tau|Z) = h\{Z^T \alpha_0(\tau)\}, \quad \tau \in (0, 1), \quad (2.2)$$

where $g(\cdot)$ and $h(\cdot)$ are known monotone link functions, and the unknown coefficient vectors, $\beta_0(\tau)$ and $\alpha_0(\tau)$, represent the covariate effects on $Q_T(\cdot|Z)$ and $Q_D(\cdot|Z)$, respectively. For simplicity, in the sequel we assume h and g are increasing functions and $h \neq g$. Our method can be readily extended to cases where $h \neq g$ and one (or both) of them is non-increasing monotone. While the interest is generally centered about $\beta_0(\tau)$, the estimation of $\alpha_0(\tau)$ may help to investigate the factors that contribute to the early withdrawal of patients.

Due to the dependence between T and D given the covariates, models concerning the marginal distribution functions or quantile functions, such as (2.1) and (2.2), cannot be identified without additional assumptions on the dependence structure between T and D. To address this identifiability issue, we specify the dependence structure between T and D by a copula model that relates the joint survival function of (T, D) to the marginal distributions as follows:

$$\Pr(T > t_1, D > t_2|Z) = H\{\Pr(T > t_1|Z), \Pr(D > t_2|Z)\}, \quad (2.3)$$

where $H(\cdot, \cdot)$ is known copula function. For example, $H(\cdot, \cdot)$ can be chosen from a variety of parametric classes, such as Clayton copula (Clayton, 1978) given by

$$H(u, v) = \left\{\begin{array}{ll}
u^{-r_c} + v^{-r_c} - 1 & \text{if } r_c > 0, \\
\frac{1}{-\log \nu r_f}(1 + \frac{\nu^{-r_c} - 1}{r_f^{-1} - 1}) & \text{if } r_f > 0 \text{ and } r_f \neq 1,
\end{array} \right.$$

where r_c and r_f are known copula parameters. In practice, the copula parameter may be chosen according to prior knowledge on the strength of the association between T and D. Alternatively, one may perform a sensitivity analysis, which may obtain bounds of $\beta_0(\tau)$ and hence $Q_T(\cdot|Z)$ by perturbing r in a plausible range.

2.2. Estimation Equations

To estimate $\beta_0(\tau)$ in model (2.1), we utilize the martingales associated with cause-specific hazard functions. Denote the counting process for T by $N_1(t) = I(X \leq t, \delta = 1)$. Define

$$M_1(t) = N_1(t) - \int_0^t Y(u) \lambda_1^+(u|Z) \, du \quad \text{where} \quad Y(u) = I(X \geq u)$$

and

$$\lambda_1^+(t|Z) = \lim_{h \to 0} \Pr\{t \leq T < t+h, T < D|T \geq t, D \geq t; Z\}/h$$

denoting the cause-specific hazard function for T. As shown by Kalbfleisch and Prentice (2002), $M_1(t)$ is a martingale with respect to the filtration $\mathcal{F}_t = \{N_1(u), Y(u+), Z\}$. This implies...
By using the fact that
\[\lambda_1^*(t \mid Z) = -\partial \log \left[H \left(F_T(t_1 \mid Z), F_D(t_2 \mid Z); r \right) \right] / \partial t_1 \bigg|_{t_1 = t_2 = t} F_D(t_2 \mid Z); r \bigg| \frac{\partial}{\partial t_1} \bigg|_{t_1 = t_2 = t} (Kalbfleisch and Prentice, 2002)
\] and employing variable transformation inside the integral, we can show that
\[\int_0^t Y(s) \lambda_1^*(s \mid Z) \, ds = \int_0^t F_D(t \mid Z) \left(Q_T(u \mid Z) \right) \varphi_1 \left(1 - u, F_D \left(Q_T(u \mid Z) \right) \right) \, du, \quad (2.5) \]
where \(\varphi_1(v_1, v_2) = \partial \log \{ H(v_1, v_2) \} / \partial v_1 \) and \(F_W(t) \) denotes the survival function for a random variable \(W \). Furthermore, we note that under models (2.1) and (2.2),
\[F_D(t \mid Z) = \int_0^t I \{ v \leq F_D(t \mid Z) \} \, dv = \int_0^t I \{ g \{ Z_i^T \alpha_0(v) \} \leq t \} \, dv \]
and therefore
\[\overline{F}_D \left(Q_T(u \mid Z) \right) = 1 - \int_0^1 I \{ Z_i^T \alpha_0(v) \leq Z_i^T \beta_0(u) \} \, dv. \quad (2.6) \]

From (2.1), (2.4), (2.5) and (2.6) we then have
\[\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n Z_i \left\{ N_{1i} \left[g \{ Z_i^T \beta_0(\tau) \} - \int_0^\tau Y \left(g \{ Z_i^T \beta_0(u) \} \right) \right] \times \varphi_1 \left(1 - u, 1 - \int_0^1 \{ Z_i^T \alpha_0(v) \leq Z_i^T \beta_0(u) \} \, dv \right) \right\} \right] = 0, \quad (2.7) \]
where \(N_{1i}(t) \) is the sample analog of \(N_{1i}(t) \).

By treating \(T \) as the dependent censoring to \(D \), a parallel equality to (2.7) can be derived for \(\alpha_0(\cdot) \). Define \(N_{2i}(t) = I(X \leq t, \delta = 2) \) and \(\{ N_{2i}(t) \}_{i=1}^n \) be the sample analogs of \(N_{2i}(t) \). Define \(\varphi_2(v_1, v_2) = \partial \log \{ H(v_1, v_2) \} / \partial v_2 \). We can show that
\[\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n Z_i \left\{ N_{2i} \left[g \{ Z_i^T \alpha_0(\tau) \} - \int_0^\tau Y \left(g \{ Z_i^T \alpha_0(u) \} \right) \right] \times \varphi_2 \left(1 - u, 1 - \int_0^1 \{ Z_i^T \beta_0(v) \leq Z_i^T \alpha_0(u) \} \, dv, 1 - u \right) \right\} \right] = 0. \quad (2.8) \]

Motivated by (2.7) and (2.8), we propose to estimate \(\beta_0(\tau) \) and \(\alpha_0(\tau) \) from the following estimating equations:
\[n^{\frac{1}{2}} S_n^{(k)}(\beta, \alpha, \tau) = 0, \quad k = 1, 2, \quad (2.9) \]
where
Note that the estimating equation (2.9) requires \(\beta_0(\tau) \) and \(\alpha_0(\tau) \) be identifiable for all \(\tau \in (0, 1) \), which may not be possible due to the censoring to \(T \) or \(D \). To circumvent this difficulty, we modify (2.9) by truncating the time scale by an upper bound, \(g\{Z^T \beta(\tau_U,1)\} \land g\{Z^T \alpha(\tau_U,2)\} \), where \(\tau_U,1, \tau_U,2 \in (0, 1) \). This leads to a new estimating equation,

\[
n^{\frac{1}{2}} S_n^{(k)}(\beta, \alpha, \tau) = 0, \quad k = 1, 2, \quad (2.10)
\]

where

\[
S_n^{(1)}(\beta, \alpha, \tau) = n^{-1} \sum_{i=1}^{n} Z_i \left\{ N_i \{ g\{Z^T \beta(\tau)\} \} I\{ g^{-1}(X_i) \leq Z^T \alpha(\tau_U,2) \} \right. \\
- \int_0^1 \int_0^1 Y_i \{ g\{Z^T \beta(u)\} \} I\{ Z^T \alpha(u) \leq \tau_U,2 \alpha(\tau) \} \varphi_1 \left(1-u, 1-f_0^{\tau_U,2} I\{Z^T \alpha(v) \leq \tau_U,2 \beta(\tau) \} dv \right) du, \\
S_n^{(2)}(\beta, \alpha, \tau) = n^{-1} \sum_{i=1}^{n} Z_i \left\{ N_i \{ g\{Z^T \alpha(\tau)\} \} I\{ g^{-1}(X_i) \leq Z^T \beta(\tau_U,1) \} \right. \\
- \int_0^1 \int_0^1 Y_i \{ g\{Z^T \alpha(u)\} \} I\{ Z^T \alpha(u) \leq \tau_U,1 \beta(\tau) \} \varphi_2 \left(1-u, 1-f_0^{\tau_U,1} I\{Z^T \beta(v) \leq \tau_U,1 \alpha(\tau) \} dv \right) du.
\]

It can be shown that equations in (2.10) still have expectation 0 at true parameters. A nice feature of these modified estimating equations is that they only involves the estimation of \(\{\beta(\tau), \tau \in (0, \tau_U,1)\} \) and \(\{\alpha(\tau), \tau \in (0, \tau_U,2)\} \), and thus does not demand the identifiability of \(\hat{\beta}(\tau) \) and \(\hat{\alpha}(\tau) \) in the upper tail of \(\tau \), pointing to a more realistic scenario. The rigorous theoretical conditions for \(\tau_U,1 \) and \(\tau_U,2 \) are deferred to the statement of asymptotic results. In practice, \(\tau_U,1 \) and \(\tau_U,2 \) may need to be selected adaptively. Some empirical rules for selecting \(\tau_U,1 \) and \(\tau_U,2 \) are presented in the next section.

2.3. Computing Algorithms

We develop an iterative algorithm for finding the solution to equation (2.10), namely Algorithm A. The procedure is described as follows.

Step A0. Set \(m = 0 \). Choose the initial value \(\hat{\alpha}^{[m]}(\tau), \tau \in (0, \tau_U,2) \).

Step A1. Solve \(S_n^{(1)}(\beta, \hat{\alpha}^{[m]}, \tau) = 0 \) for \(\hat{\beta}^{[m+1]}(\tau), \tau \in (0, \tau_U,1) \). Update \(\tau_U,1 \) with \(\tau_U,1^{[m+1]} \).

Step A2. Solve \(S_n^{(2)}(\hat{\beta}^{[m+1]}, \alpha, \tau) = 0 \) for \(\hat{\alpha}^{[m+1]}(\tau), \tau \in (0, \tau_U,2) \). Update \(\tau_U,2 \) with \(\tau_U,2^{[m+1]} \).
Step A3. Let $m = m + 1$. Repeat Steps A1 and A2 until certain convergence criteria are met.

At Step A0, one practical way to set the initial estimates is to fit model (2.1) for T and fit model (2.2) for D using existing quantile regression techniques which assume T and D are independent, for example, using Peng and Huang (2008)’s method.

At Step A1, we adopt a grid-based procedure that assumes $\hat{\beta}^{m+1}(\tau)$ to be a right-continuous step function jumping only on a prespecified grid, $\mathcal{G}_{\tau} = \{0 = \tau_0 < \tau_1 < \cdots < \tau_{L_n} = \tau_{m+1} < 1\}$. Let $||\tau||$ denote the size of the grid \mathcal{G}_{τ}, which equals $\max\{\tau_{j+1} - \tau_j\}$, $j = 0, \cdots, L_n - 1$. The solution can be obtained by sequentially solving the following monotone estimating equation in $\beta(\tau_j)$ ($j = 1, \cdots, L_n$):

\[
\begin{align*}
-\frac{1}{n} \sum_{i=1}^{n} & I[X_i \leq g(Z_i^T \beta(\tau_j)), \delta_i = 1] I[g^{-1}(X_i) \leq Z_i^T \hat{\alpha}^m(\tau_{U,i})] \\
& - \sum_{i=1}^{n} (\tau_{j+1} - \tau_j) I[X_i \geq g(Z_i^T \beta(\tau_j))] I[Z_i^T \beta(\tau_j) \leq Z_i^T \hat{\alpha}^m(\tau_{U,i})] \times \varphi_1(1 - \tau_j, 1 - \int_{0}^{\tau_{U,i}} I[Z_i^T \hat{\alpha}^m(\tau) \leq Z_i^T \beta(\tau_j)] d\tau) = 0
\end{align*}
\]

(2.11)

with $g(Z_i^T \beta(0))$ set to be 0.

Due to the monotonicity of (2.11), the root finding problem in (2.11) is equivalent to locating the minimizer of the following L_1-type convex function:

\[
\begin{align*}
l_j(h) = & \sum_{i=1}^{n} I[\delta_i = 1] I[g^{-1}(X_i) \leq Z_i^T \hat{\alpha}^m(\tau_{U,i})] g^{-1}(X_i) \\
& - h^T Z_i \sum_{i=1}^{n} I[\tau_{U,i} \leq \hat{\beta}(\tau_j)] I[Z_i^T \beta(\tau_j) \leq Z_i^T \hat{\alpha}^m(\tau_{U,i})] Z_i \\
& + R^* - h^T \sum_{i=1}^{n} \sum_{j=1}^{L_n} (-I[\delta_i = 1]) I[g^{-1}(X_i) \leq Z_i^T \hat{\alpha}^m(\tau_{U,i})] g^{-1}(X_i) \\
& + R^* - h^T \sum_{r=1}^{n} \sum_{s=0}^{n} I[X_s \geq Z_r^T \beta(\tau_j)] I[Z_r^T \beta(\tau_j) \leq Z_r^T \hat{\alpha}^m(\tau_{U,i})] \times \varphi_1(1 - \tau_j, 1 - \int_{0}^{\tau_{U,i}} I[Z_r^T \hat{\alpha}^m(\tau) \leq Z_r^T \beta(\tau_j)] d\tau) \\
& \times (\tau_{j+1} - \tau_j),
\end{align*}
\]

(2.12)

where R^* is a very large number.

Note that $\tau_{U,j}$ is adaptively selected and may vary at each iteration. At the end of the m-th iteration, we choose $\tau_{U,j}$ to be τ_{m+1}, the largest quantile at which $\hat{\beta}^{m+1}(\cdot)$ can be solved. For example, we may examine the distance between $\hat{\beta}^{m+1}(\tau_j)$ and $\hat{\beta}^{m+1}(\tau_{j+1})$ for each j, namely d_j. If d_j exceeds a moderate pre-specified threshold, we stop the sequential procedure and set $J = j$ and thus $\tau_{m+1} = \tau_{j+1}$. In our numerical studies we set the threshold to 10. The underlying rationale is that, given a fine grid \mathcal{G}_{τ}, $\hat{\beta}^{m+1}(\tau_j)$ and $\hat{\beta}^{m+1}(\tau_{j+1})$ are expected be very close in the identifiable τ-region for $\hat{\beta}(\cdot)$ when $j > 0$.

Similarly as in Step A1, the root-finding procedure at Step A2 can be transformed to minimizing a L_1-type convex function parallel to (2.12) and we omit the exact expressions here. The L_1-minimization problem can be readily solved by using existing packages implemented in standard statistical software, such as $l1fit()$ function in S-PLUS and $rq()$ function.
function in R. A similar adaptive strategy as for selecting $\tau_{U,1}$ can be adopted for $\tau_{U,2}$, which is updated at the m–th iteration with $\tau_{U,2}^{[m+1]}$, the largest quantile at which $\alpha^{[m+1]}(\cdot)$ can be identified.

Based on our experience, we have found that the numerical performance of the above algorithm may be unstable when there is heavy censoring on D. For example, in the context of the WASID study, about 80% of the observations on D were censored by either T or C. This is quite expected in a well-designed study when D represents informative dropouts. In such a case, adopting a more restrictive version of model (2.2) for D may improve the estimation efficiency and thus help increase the numerical stability. One specific remedy is to adopt an AFT model for D, which only allows the intercept $\alpha_0(\tau)$ to vary with τ but imposes constancy on each covariate effect $\alpha^{(k)}(\tau)$ for $k = 1, \ldots, p$. Note that, since D is subject to dependent censoring posed by T, classical AFT estimation that requires conditional independent censoring is not applicable to fit a AFT model for D. Taking this into account, we propose a modified version of Algorithm A, namely Algorithm B, described as follows.

Step B0. Set $m = 0$. Obtain the initial values $\alpha^{[m]}(\tau), \tau \in (0, \tau_{U,2}]$ by fitting an AFT model using Jin, Lin, Wei, and Ying (2003)’s method.

Step B1. Solve $S_n^{(1)}(\beta, \hat{\alpha}^{[m]}, \tau) = 0$ for $\beta^{[m+1]}(\tau), \tau \in (0, \tau_{U,1}]$. Update $\tau_{U,1}$ with $\tau_{U,1}^{[m+1]}$.

Step B2. Obtain $\alpha^{[m+1]}(\tau), \tau \in (0, \tau_{U,2}^{[m+1]})$ via the following procedure:

- **a.** Solve $S_n^{(2)}(\hat{\beta}^{[m+1]}, \alpha, \tau) = 0$ for $\alpha^{[m+1]}(\tau), \tau \in (0, \tau_{U,2}]$.
- **b.** Obtain the constant $\alpha^{[m+1]}(\tau)$ by taking the average of $\alpha^{[m+1]}(\tau)$ over $\tau \in [\tau_0, \tau_{U,2}]$ for $k = 1, \ldots, p$, where $\tau_0 \in (0, \tau_{U,2})$ and $\tau_0 \in (\tau_{U,2}, \tau_{U,2}^{[m+1]}$) are prespecified constants that represent a well identified region for $\alpha^{[m+1]}(\tau)$.
- **c.** Compute the residual on the g^{-1} scale, i.e., $g^{-1}(\hat{\epsilon}_i) = g^{-1}(X_i) - Q_i$, where $Q_i = Z_i^{T} (\hat{\alpha}^{[m+1]}_{[0]}, \ldots, \hat{\alpha}^{[m+1][p]+1})$.
- **d.** Obtain $\alpha^{[0][m+1]}(\tau)$ for $\tau \in (0, \tau_{U,2}^{[m+1]})$ by solving $S_n^{(0)}(\beta^{[m+1]}, \alpha(0), \tau) = 0$, where
Update $\tau_{U,2}$ with $\tau_{U,2}^{[m+1]}$.

Step B3. Let $m = m+1$. Repeat Steps B1 and B2 until certain convergence criteria are met.

Note that in this above procedure, $\tau_{U,2}$ is selected in a slightly different manner in contrast with Algorithm A. Specifically, at the m–th iteration, we set $\tau_{U,2}$ at $\tau_{U,2}^{[m+1]}$, the largest τ at which the intercept $\hat{\alpha}(0)(\tau)$ can be obtained. We still select $\tau_{U,1}$ based on the identifiability of the $p + 1$ vector $\hat{\beta}$. As in Steps A1 and A2, equations involved in Steps B1 and B2 can also be treated as L_1 minimization problems and thus conveniently solved. Details of the convergence criteria for Steps A3 and B3 are provided in Appendix D.

In practice, one may consider more general parametric submodeling of $\alpha_0(\tau)$ along the lines of Fine, Yan, and Kosorok (2004) to bring down the dimensionality of regression quantiles for D. The AFT model based remedy can be viewed as a special case of this type of analysis, where constant submodels are assumed for all non-intercept coefficients in $\alpha_0(\tau)$. The algorithm B can be adapted accordingly.

2.4. Asymptotic Results

Under regularity conditions C1–C5 (provided in Appendix A), we establish the the uniform consistency and weak convergence for $\hat{\beta}(\tau)$ and $\hat{\alpha}(\tau)$ stated in the following theorems.

Theorem 2.1—Assuming conditions C1–C5 hold and $\lim_{m \to \infty} \|q_m\| = 0$, then

$$
\sup_{\tau \in [\nu_1, \tau_{U,1}]} \|\hat{\beta}(\tau) - \beta_0(\tau)\| \to 0 \quad \text{and} \quad \sup_{\tau \in [\nu_2, \tau_{U,2}]} \|\hat{\alpha}(\tau) - \alpha_0(\tau)\| \to 0, \quad \text{where} \quad 0 < \nu_1 < \tau_{U,1} \quad \text{and} \quad 0 < \nu_2 < \tau_{U,2}.
$$

Theorem 2.2—Assuming conditions C1–C5 hold and $\lim_{m \to \infty} n^{1/2} \|q_m\| = 0$, then $n^{1/2}[\hat{\beta}(\tau) - \beta_0(\tau)]$ converges weakly to a Gaussian process for $\tau \in [\nu_1, \tau_{U,1}]$ with $0 < \nu_1 < \tau_{U,1}$, and $n^{1/2}[\hat{\alpha}(\tau) - \alpha_0(\tau)]$ converges weakly to a Gaussian process for $\tau \in [\nu_2, \tau_{U,2}]$ with $0 < \nu_2 < \tau_{U,2}$.

The proofs of these two theorems can be viewed as extensions of those in Peng and Huang (2008) to the bivariate case, which however are not straightforward. To prove Theorem 2.1, we first note that the proposed estimating functions $S_n^{(1)}(\beta, \alpha, \tau)$ and $S_n^{(2)}(\beta, \alpha, \tau)$ converge to their expectations $s^{(1)}(\beta, \alpha, \tau)$ and $s^{(2)}(\beta, \alpha, \tau)$ uniformly in τ. Second, with fixed α in equations $S_n^{(1)}(\beta, \alpha, \tau) = 0$ and $s^{(1)}(\beta, \alpha, \tau) = 0$, the solutions for β can be viewed as functionals of α, namely $\hat{\beta}(\alpha)$ and $\tilde{\beta}(\alpha)$, respectively. We can then use $\hat{\beta}(\alpha)$ and $\tilde{\beta}(\alpha)$ to bridge
\[\hat{\beta} \hat{\alpha} \tau \] and \[\hat{\beta}(\tau) = \hat{\beta}(\hat{\alpha} \tau) \]. Similarly we can use \[\hat{\alpha} \hat{\beta} \tau \] to bridge \[\hat{\alpha} \hat{\beta} \tau \] and \[\hat{\alpha}(\tau) = \hat{\alpha} \hat{\beta} \tau \], where \[\hat{\alpha} \hat{\beta} \tau \] and \[\hat{\alpha} \hat{\beta} \tau \] are the solutions for \[\alpha \] to \[S_n^{(2)}(\beta, \alpha, \tau) = 0 \] and \[s_n^{(2)}(\beta, \alpha, \tau) = 0 \] with fixed \[\hat{\beta} \] respectively. To circumvent the difficulty that \[||\hat{\beta}(0)|| = \infty \] and \[||\hat{\alpha}(0)|| = \infty \], which is implied by models (2.1) and (2.2) and our estimating procedure, we consider

\[
\theta(\tau) = \mu \left(\frac{\beta(\tau)}{\alpha(\tau)} \right) = \left(\frac{E \left(ZN_1 \{ g(Z^T \beta(\tau)) \} \right)}{E \left(ZN_2 \{ g(Z^T \alpha(\tau)) \} \right)} \right),
\]

and prove that \[\hat{\theta}(\tau) \] converges in probability to \[\theta(\tau) \] uniformly for \[\tau \in (0, \tau_u] \]. This result further leads to the uniform convergency of \[\hat{\beta} \tau \] for \[\tau \in [\tau_1, \tau_{u,1}] \] and \[\hat{\alpha} \tau \] for \[\tau \in [\tau_{1,2}, \tau_{u,2}] \].

To prove Theorem 2.2, we first establish the connection between \[n^{1/2}(\hat{\beta} \tau - \beta(\tau)) \] and \[n^{1/2}(\hat{\alpha} \tau - \alpha(\tau)) \] via a stochastic integral equation. This result allows us to express \[n^{1/2}(\hat{\beta} \tau - \beta(\tau)) \] as a linear map of \[n^{1/2}(\hat{\alpha} \tau - \alpha(\tau)) \]. The latter can be shown to have weak convergence, which implies the result in Theorem 2.2. The detailed proofs of Theorems 2.1 and 2.2 are provided in Appendices B and C.

2.5. Inferences

Given the complex limiting distributions of \[\hat{\beta} \tau \] and \[\hat{\alpha} \tau \] as shown in the proof of Theorem 2.2, we employ the bootstrap approach (Efron, 1979) to make inference on \[\beta(\tau) \] and \[\alpha(\tau) \]. More specifically, we obtain \(B \) bootstrapped samples, each of which is obtained by resampling with replacement \(n \) times from the original dataset. For the \(b \)-th bootstrapped sample, we conduct the estimation procedure presented in Sections 2.2–2.3 and obtain

\[\{ \hat{\beta}_p(\tau), \tau \in (0, \tau^*_{u,1,b}) \} \] and \[\{ \hat{\alpha}_p(\tau), \tau \in (0, \tau^*_{u,2,b}) \} \] \((b = 1, \ldots, B) \). For each fixed \(\tau \), we may estimate the variances of \[\hat{\beta} \tau \] and \[\hat{\alpha} \tau \] by the sample variances of \[\{ \hat{\beta}_p(\tau) \} \] and \[\{ \hat{\alpha}_p(\tau) \} \] respectively, and construct confidence intervals of \[\beta(\tau) \] and \[\alpha(\tau) \] using normal approximation.

Hypotheses testing can be conducted to further investigate the patterns of the covariate effects. Define \[\beta_0^{(q)}(\tau) \] to be the coefficient corresponding to \(Z^{(q)} \), the \(q \)-th component of \(Z(\tau = 1, \ldots, p) \). In practice, one may be especially interested in testing (I) the overall significance of \[\beta_0^{(q)}(\tau) \] across a pre-specified range of \(\tau \), say \([l, u] \), where \(0 < l < u < \tau_{u,1} \); and (II) the constancy of \[\beta_0^{(q)}(\tau) \] over \(\tau \in [l, u] \). The corresponding null hypotheses may be formulated as \(H_0: \beta_0^{(q)}(\tau) = 0, \tau \in [l, u] \) and \(H_0: \beta_0^{(q)}(\tau) = \rho_0, \tau \in [l, u] \), where \(\rho_0 \) is an unknown constant, respectively. To address these hypothesis testing problems, we first define a useful summary statistic, \(\eta_{0,q} \equiv \int_l^u \tilde{\beta}_0^{(q)}(v) dv / (u-l) \) for \(q = 1, \ldots, p \), which may be interpreted as the average covariate effect of \(Z^{(q)} \) across \(\tau \in [l, u] \). Following the justification provided in Peng and Huang (2008), it can be shown that \(\hat{\eta}_q = \int_l^u \tilde{\beta}_q^{(q)}(v) dv / (u-l) \) is a consistent estimator for \(\eta_{0,q} \) and is asymptotically normal. Given the observed data, the limiting distribution of \(\hat{\eta}_q \) can be
approximated by the sample \(\{ \eta_{b,q} \}_{b=1}^B \), where \(\eta_{b,q} = \int_{l}^{u} \beta^*_q (v) \, dv / (u - l) \). To test \(H_0 \), we note that under the null, the limit distribution of \(\eta_b \) is a mean zero normal distribution, the variance of which can be estimated via the resampling procedure mentioned above. Therefore, a Wald-type test statistic for testing \(H_0 \) is given by \(\eta_b \) divided by its standard error.

Regarding \(H_{\tilde{\theta}} \), one may adopt the test statistic \(\tilde{\Gamma} = n^{1/2} \int_{l}^{u} \left(\beta^*_q (v) - \beta_0^*(v) \right) \Theta(v) \, dv / (u - l) \), where \(\Theta(\cdot) \) is a pre-specified nonconstant and nonnegative weight function. Note that, the essential idea of \(\Gamma_{\tilde{\theta}} \) is to compare two different weighted averages of \(\beta^*_q (\tau) \) over \(\tau \), which is expected to be small if \(\beta_0^*(\tau) \) is constant over \(\tau \). When \(H_0 \) holds, \(\beta_0^*(v) = \eta_{0,q} \) for all \(v \in [l, u] \) and thus

\[
\tilde{\Gamma} = n^{1/2} \int_{l}^{u} \left(\beta^*_q (v) - \beta_0^*(v) \right) \Theta(v) \, dv / (u - l)
\]

Given the functional linearity of \(\tilde{\Gamma} \) implied by the proof of Theorem 2.2, we can show that the limiting distribution of \(\tilde{\Gamma} \) under \(H_0 \) is a normal distribution, which can be approximated by the conditional distribution of \(\tilde{\Gamma}^* \) denoted by \(\sigma(\tilde{\Gamma})^2 \). The \(p \) value for the Wald type test can be obtained from comparing \(\tilde{\Gamma} / \sigma(\tilde{\Gamma}) \) with the distribution \(N(0, 1) \).

The hypothesis testing procedures presented above follow very similar lines of Fine et al. (2004) and Peng and Huang (2008). Detailed justifications are thus omitted.

3. Simulation Studies

We studied the finite-sample performance of the proposed estimators via Monte-Carlo simulations. For the association structure between \(T \) and \(D \), we considered the Clayton copula with association parameter \(r_c \) and the Frank’s copula with association parameter \(r_f \). We set \(r_c = \exp(1) \) and \(r_f = \exp(-7.325) \) and correspondingly the values of Kendall’s tau are the same for both settings and equal to 0.576, representing moderate dependency. To achieve the desired dependence structure between \(T \) and \(D \), we generated \(\varepsilon_1 \) and \(\varepsilon_2 \) based on a shared frailty model so that \((\varepsilon_1, \varepsilon_2) \) follows a Clayton or Frank copula model. More specifically, we adopted the gamma frailty to generate the Clayton copula model, following the procedure provided in Oakes (1989). We used the Log-series frailty for Frank copula as described in Yan (2007).

We generated \(T \) from a log linear model with heteroscedastic errors:

\[
\log T = b_1 Z_1 + b_2 Z_2 + \varepsilon_1,
\]

where \(Z_1 \sim \text{Unif}(0, 1) \), \(Z_2 \sim \text{Bernoulli}(0.5) \), and the error term \(\varepsilon_1 \) follows \(N(0, 0.2^2) \) if \(Z_2 = 0 \) and \(N(0, 0.4^2) \) if \(Z_2 = 1 \). In addition, \(D \) was generated from the AFT model.
where \(\varepsilon_2 \sim N(\mu_2, 0.3^2) \). The independent censoring time \(C \) was assumed to follow \(\text{Unif}(0, c_u) \). Under this set-up, models (2.1) and (2.2) hold with \(g(\cdot) = \exp(\cdot) \). It can be shown that the underlying regression quantile, where

\[
\alpha_0(\tau) = \{ Q_{N(0,0.2^2)}(\tau), \beta_0(\tau), \beta_0(2)(\tau) \}^T,
\]

where

\[
\beta_0(\tau) = b_1, \quad \beta_0(1) = b_1, \quad \beta_0(2) = b_2 + Q_{N(0,0.4^2)}(\tau) - Q_{N(0,0.2^2)}(\tau).
\]

It can also be seen that \(\alpha_0(\tau) = \{ Q_{N(\tau, a_1, a_2)^T} \} \). Under each copula, we considered two specific configurations: (I) \(\mu_2 = 0, b_1 = 0.27, b_2 = 0, a_1 = 0, a_2 = 0.3, c_u = 12 \), which results in 10% independent censoring and 45% dependent censoring to \(T \), and thus 45% dependent censoring to \(D \); and (II) \(\mu_2 = 0.1, b_1 = 0.27, b_2 = 0, a_1 = 0, a_2 = 0.3, c_u = 12 \), which results in 10% independent censoring and 30% dependent censoring to \(T \), and thus 60% dependent censoring to \(D \). For case (I) we assumed a general quantile regression model for \(D \). For case (II) we adopted the modified algorithm assuming AFT model for \(D \) with \(\tau_a = 0.1 \) and \(\tau_b = 0.4 \).

Under each configuration we simulated 1000 date sets of sample size \(n = 200 \). An equally spaced grid on \(\tau \) with size 0.01 was adopted when estimating \(\beta_0(\tau) \) and \(\alpha_0(\tau) \). We chose \(B = 100 \) as the number of bootstrap replicates for the variance estimation.

Table 3.1 presents the estimation results when the Clayton copula was correctly adopted. We report the biases (Bias), empirical standard deviations (EmpSD), average estimated resampling-based standard deviations (AvgSD) of \(\hat{\beta}(\tau) \) and \(\hat{\alpha}(\tau) \), and coverage rates of 95% Wald confidence intervals of \(\hat{\beta}(\tau) \) and \(\hat{\alpha}(\tau) \) with \(\tau = 0.1, 0.3, 0.5 \) and 0.7. These results show that under these set-ups the biases are small, the bootstrap standard errors agree well with the empirical ones, and the coverage rates are in general close to the nominal level. For case (I), the convergence rate was 94.5% and on average 3.7 iterations were required to achieve convergence. For case (II) the convergence rate was 99.2%, achieved by an average of 4.4 iterations. In a similar fashion, Table E1 in Appendix E presents the estimation results when data were generated based on the Frank copula model. These results are also satisfactory. For case (I), the convergence rate was 92.7% with 5.5 iterations on average. For case (II) the convergence rate was 99.7%, achieved by an average of 5.3 iterations. With a real dataset, the algorithm failing to converge might indicate a lack of sufficient information to estimate regression quantiles within the specified \(\tau \)-range. In that case, one may consider inference on a narrower \(\tau \)-range or a more restrictive model for \(T \) or \(D \) which requires less information to achieve a reasonable fit of the data.

We also compared our approach with a naive application of Peng and Huang (2008) by simply treating \(D \) as independent censoring. Figure 3.1 displays the mean estimated coefficients from the proposed approach and those from the naive approach along with the true coefficients under a correctly specified Clayton copula, assuming an AFT model for \(D \) in both approaches. We can see that the proposed estimator \(\hat{\beta}(\tau) \) is virtually unbiased and \(\hat{\alpha}(\tau) \) has only small bias, while the naive approach can produce substantial bias. This again suggests the importance to properly account for dependent censoring.
To assess the robustness of our methods, we also carried out estimation procedures with mis-specified copulas and compared the results to those under the correct copulas. Specifically, we focused on configuration (II), the case with 30% dependent censoring. With the true Kendall’s tau set to be 0.576, we first generated T and D under the Clayton copula, and then estimated the regression coefficients assuming two types of dependence structure. One is the Frank copula with Kendall’s tau= 0.576, which represents the situation of mis-specified copula function with correct degree of association, and the other is the Clayton copula with Kendall’s tau= 0.79, 0.33 and 0.16, in which the copula function was true but the association parameters were not. Similarly, we also generated T and D under the Frank copula, and examined the estimation when assuming Clayton copula with Kendall’s tau= 0.576 and Frank copula with Kendall’s tau= 0.26, −0.12 and − 0.33, respectively.

Table E2 (Appendix E) summarizes the results when we mis-specified the copula function but correctly specified the association parameter, with the dependent censoring rate set to be 30%. Interestingly, the biases are still small and the coverage rates are again close to the nominal level. This suggests that, even with incorrect copula function, we may still obtain unbiased estimation if right knowledge about the degree of association is accessible. In contrast, Figures E1 and E2 (Appendix E) depict the estimated coefficients for T under correctly specified copula forms with mis-specified association levels. Unsurprisingly, the magnitude of the biases increases with the deviation of the assumed association from the true value. For example, when the underlying copula was Clayton with Kendall’s tau= 0.576, the resulting biases may be moderate (as large as 0.05) for $\beta(\tau)$ by assuming Kendall’s tau= 0.79 or 0.33, and more pronounced (as large as 0.09) by assuming Kendall’s tau= 0.16.

4. The WASID Example

We applied the proposed method to the WASID study, a double-blind and multicenter clinical trial that compared warfarin and aspirin in treating symptomatic intracranial arterial stenosis, an important cause of stroke. In this trial, 569 patients who had stroke or transient ischemic attack resulting from stenosis of a major intracranial artery were randomized to receive either warfarin or aspirin. In our analysis, T was defined as time from randomization to ischemic stroke, brain hemorrhage, or death, whichever happened first. Here and hereafter, we refer to this event as “study endpoint”. During an average of 1.8-year follow-up, T was observed for 57 patients treated by warfarin and 60 patients treated by aspirin. Due to various reasons, the study medications were terminated early for 125 patients, among whom 81 were on the warfarin arm and 44 were on the aspirin arm. The follow-up of these patients continued while they received appropriate disease management determined by their primary physicians. The primary analysis reported in Chimowitz et al. (2005) followed an intent-to-treat (ITT) strategy. That is, for patients whose assigned treatments were terminated early, no distinction was made between the follow-up information before and after the withdrawal.

It is of interest to conduct a secondary on-treatment analysis that confers the treatment effect pertaining to the situation where the originally assigned treatment was not terminated early. To address this interest, our strategy was to censor the time to study endpoint at the time of
early termination of study medication. We also looked into the possibility of adopting a framework recently proposed for handling premature termination of treatment (Zhang, Tsiatis, Davidian, Pieper, and Mahaffey, 2011), which requires distinguishing mandatory discontinuation of study medication and attaches the effect of interest to the dynamic treatment regimen that accounts for mandatory treatment discontinuation. However, per WASID protocol, there is no clear and definite rule to categorize mandatory termination and optional termination of study medication. Decisions for stopping study medication and post-withdrawal treatment were largely based on the discretion of physicians. Therefore, we did not pursue the analysis in this direction.

For the new analysis considered here, one complication is that the withdrawals may be correlated with the underlying disease progression and thus pose dependent censoring to T. We let D denote dependent censoring time, which is time from randomization to study withdrawal. In addition, administrative censoring occurred for 146 patients in the warfarin group and 172 patients in the aspirin group. Time to such independent censoring was denoted by C. We considered three covariates: Treatment, which equals 1 for warfarin and 0 for aspirin; Diabetes, the indicator of having diabetes; Stenosis Percentage, which stands for the percentage of stenosis by central reader.

We first analyzed the WASID data based on some classical approaches, naively treating early drug termination as independent censoring. No treatment effect was detected by the log rank test. Adjusting for Diabetes and Stenosis Percentage, the Cox regression also suggested that there was no significant treatment effect. The hazard ratio of warfarin versus aspirin was 0.91 with p-value=0.63. Stenosis Percentage was not found to be significant in predicting time to the study endpoint either. Having diabetes was found to have a significant negative effect on the progression to the study endpoint. The corresponding hazard ratio and p value were 2.15 and < 0.001 respectively.

We then applied the proposed regression approach adjusting for the same set of covariates considered in the naive analysis. We specified different r values such that the corresponding Kendall’s tau were 0.2, 0.4, 0.6, and 0.8, representing the cases where the positive associations between T and D were weak, moderate and strong. The link function was chosen to be $\log(\cdot)$. Due to heavy censoring to D by T or C with the censoring rate around 80%, we adopted an AFT model for D to increase numerical stability. For inference, we performed 300 bootstrap resampling for each scenario. We considered both Clayton copula and Frank copula. Nevertheless we only present the results based on the Clayton copula, since the results under the Frank copula are very similar and thus are omitted.

Figure 4.2 depicts the estimates for $\beta(\tau)$ under the Clayton copula, together with the results from a naive application of Peng and Huang (2008) in which D was treated as independent censoring. From Figure 4.2 we observe that, the naive estimate and the proposed estimates for the treatment effect appear to be similar for $\tau < 0.18$ and demonstrate a larger yet moderate divergence for later τ’s. In all cases, the estimated treatment effects over τ demonstrate a common pattern: being negative at lower quantiles and then decreasing in the magnitudes and becoming stabilized around 0. For Diabetes and Stenosis Percentage, the
departure of the estimates that assume dependent censoring from the naive estimate are more noticeable.

In Table 4.2, we summarize the standard errors of the naive estimates and the proposed estimates under different specifications of r with $r > 0$. It can be seen that the proposed estimates have comparable efficiency to the naive estimate obtained by Peng and Huang (2008)’s method. We also performed the second-stage inference procedure on the WASID data. Formal tests on the significance of covariate effects were performed based on the average effects on quantiles of T with r ranging from 0.05 to 0.25. Results show that the treatment effect was not significant for any choice of r we considered. This is consistent with Chimowitz et al. (2005), which found no benefit of warfarin over aspirin in the WASID trial. However, we found that Diabetes has significant effects under all choices of r (all p-values < 0.001), with the average effects being -1.58, -1.49, -1.38, -1.28 and -1.11, corresponding to the cases where Kendall’s tau = 0, 0.2, 0.4, 0.6 and 0.8, respectively. This result suggests the diabetic patients may progress significantly faster to the study endpoint compared to nondiabetic patients. This finding is consistent with the naive Cox regression analysis, but is better endorsed by taking into account the potential dependence between T and D.

To illustrate the impact of adjusting for dependent censoring in a more meaningful way, we plot the estimated quantiles of T and D (see Figure 4.3 and Figure E3 in Appendix E) for each treatment group with and without diabetes, with Stenosis Percentage fixed at its mean value. From Figure E3, it is apparent that the disparity among different estimates is negligible in the diabetes group, but accounting for dependent censoring at different levels can lead to quite dramatically different estimates for $Q_T(\tau|Z)$ in the non-diabetic group. One plausible explanation for this is that non-diabetic patients generally progress to the study endpoint slower than diabetic patients and thus are more prone to the “risk” of early termination of study medication. Consequently, adjusting for dependent censoring for the non-diabetic patients makes a bigger influence on the estimated quantiles of T. It is also interesting to note from Figure 4.3 that assuming independence between patient withdrawal and the study endpoint tends to give more optimistic estimate for $Q_T(\tau|Z)$ compared to the other cases where T and D were assumed to be positively associated. This phenomenon is also reasonable. An intuitive explanation may be that an observed D (which means $T > D$ and T is censored) would be suggestive of a smaller T when T and D are believed to be positively associated than that under the independence between T and D. As a result, the prediction of $Q_T(\tau|Z)$ would be more conservative under a positive association assumption. From Figure E3 we can see that the warfarin group tends to have smaller D compared to the aspirin group, which means the patients treated by warfarin tend to withdraw earlier than the other group. This is also consistent with Chimowitz et al. (2005), which found a higher rate of adverse events in the warfarin group than in the aspirin group.

In summary, in the WASID example we found no evidence of better clinical efficacy for warfarin compared to aspirin in treating symptomatic intracranial arterial stenosis, which is consistent with previously published results on this trial. In our analysis, we took into account of the dependence between T and D and provided a comprehensive view of the covariate effects under different specifications of the association. The results we obtained
are quite consistent across assumptions of weak, moderate and strong associations between T and D, and therefore more confidence is gained to support the scientific conclusions of Chimowitz et al. (2005) through this new analysis. Our method also enables us to explore dynamic patterns of the covariate effects across different quantiles of T. The predicted conditional quantiles of T provide intuitive and robust prognostic information to physicians and patients in clinical practice.

5. Remarks

In this paper we propose a quantile regression method for survival data subject to dependent censoring. Under the assumed model for the event time of interest, covariate effects are formulated on the quantiles defined on the marginal survival distribution. This type of modeling is sensible when the scenario corresponding the removal of the dependent censoring event is scientifically relevant.

To circumvent the identifiability issue with dependently censored data, we model the dependence structure between the survival time and the censoring via a fully specified copula model (2.3). The same strategy has been adopted in dependent censoring or competing risks literature, for example, Zheng and Klein (1995), Huang and Zhang (2008), and Chen (2010). It is worth noting that such a copula model assumption is not verifiable based on the observed data. As a result, one needs to excise caution when applying the proposed method to real datasets. Our extensive numerical studies show that the proposed estimation is quite robust to the misspecification of the parametric class of the adopted copula (e.g. Clayton or Frank), provided the strength of association, often captured by the copula parameter, is reasonably specified. This result may provide some endorsement for using our method to assess survival quantiles when some good estimate for the degree of dependence is accessible from prior studies. When such information is not available, our regression procedure can serve as a robust tool for sensitivity analysis, which assesses the influence of various dependence assumptions on the estimation of regression quantiles.

Alternative approaches in literature that concern net quantities generally make additional assumptions to ease the complications from the identifiability concern. For example, some earlier developments (Moeschberger, 1974; Link, 1989; Emoto and Matthews, 1990, among others) directly specified the bivariate distribution by either parametric or semi-parametric models. These methods are easy to implement, but may depend on the validity of the unverifiable parametric assumptions. Other authors (Robins and Rotnitzky, 1992; Robins, 1993; Robins and Finkelstein, 2000; Scharfstein, Robins, Eddings, and Rotnitzky, 2001; Scharfstein and Robins, 2002, among others) proposed estimation based on inverse probability of censoring weighting (IPCW) with the flexibility to accommodate time-dependent prognostic factors. This type of approach involves modeling of the censoring mechanism, another nonverifiable component in the dependent censoring setting. Sensitivity analysis was also suggested in these cases.

As discussed in Section 1, analyses of dependently censored data can also be focused on identifiable crude quantities to provide inference corresponding to settings that do not exclude censoring events (Gray, 1988; Pepe, 1991; Lin, 1997; Fine and Gray, 1999, among others).
others). In practice, considering crude quantities and net quantities offer alternative perspectives of survival endpoint of interest; one may be more preferable than the other according to the scientific context of the data (Jiang, Chappell, and Fine, 2003). The proposal in this work concerns net conditional quantiles of T, as motivated by the WASID example, and will provide a useful complement to existing methods for dependently censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors are grateful to the editor, the associate editor, and the two referees for many helpful comments. This work has been supported by National Science foundation grant DMS-1007660 and by the National Heart, Lung, and Blood Institute of Health under Award number R01HL 113548.

References

Stat Sin. Author manuscript; available in PMC 2014 November 06.

Figure 3.1.
Upper Panel: Comparison among True coefficients $\beta(\tau)$ (Bold Solid Lines), Mean Estimates for $\beta(\tau)$ from the Proposed Method (Solid Lines) under a Correctly Specified Clayton Copula, and Mean Estimates for $\beta(\tau)$ from the Naive Approach (Dotted Lines); Lower Panel: Comparison among True coefficients $\alpha(\tau)$ (Bold Solid Lines), Mean Estimates for $\alpha(\tau)$ from the Proposed Method (Solid Lines) under a Correctly Specified Clayton Copula, and Mean Estimates for $\alpha(\tau)$ from the Naive Approach (Dotted Lines).
Figure 4.2.
The WASID Example: Point Estimates of Regression Coefficients for Time to the Primary Endpoint (Ischemic Stroke, Brain Hemorrhage, or Death) under the Clayton Copula with Kendall’s tau=0, 0.2, 0.4, 0.6 and 0.8.
Figure 4.3.
The WASID Example: Estimated Quantiles of Time to the Primary Endpoint (Ischemic Stroke, Brain Hemorrhage, or Death) under the Clayton Copula with Kendall’s τ = 0, 0.2, 0.4, 0.6 and 0.8, with the Stenosis Percentage Fixed at Its Mean (63.7%)
Table 3.1

Simulation Results on Parameter Estimation under the Clayton copula.

<table>
<thead>
<tr>
<th>τ</th>
<th>Bias</th>
<th>EmpSD</th>
<th>AvgSD</th>
<th>Cov95</th>
<th>Bias</th>
<th>EmpSD</th>
<th>AvgSD</th>
<th>Cov95</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.10</td>
<td>0.11</td>
<td>ρ(0)</td>
<td>0.01</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.02</td>
<td>0.19</td>
<td>0.22</td>
<td>ρ(1)</td>
<td>−0.02</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.02</td>
<td>0.10</td>
<td>0.11</td>
<td>ρ(2)</td>
<td>0.02</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td>0.3</td>
<td>ρ(0)</td>
<td>0.01</td>
<td>0.09</td>
<td>0.10</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.01</td>
<td>0.16</td>
<td>0.19</td>
<td>ρ(1)</td>
<td>−0.02</td>
<td>0.14</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.01</td>
<td>0.08</td>
<td>0.09</td>
<td>ρ(2)</td>
<td>0.01</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td>0.5</td>
<td>ρ(0)</td>
<td>0.01</td>
<td>0.08</td>
<td>0.09</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.09</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.02</td>
<td>0.16</td>
<td>0.21</td>
<td>ρ(1)</td>
<td>−0.02</td>
<td>0.14</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.01</td>
<td>0.08</td>
<td>0.09</td>
<td>ρ(2)</td>
<td>0.01</td>
<td>0.08</td>
<td>0.10</td>
</tr>
</tbody>
</table>

10% indep. censoring, 30% dep. censoring to T, 60% dep. censoring to D, AFT model for D

<table>
<thead>
<tr>
<th>τ</th>
<th>Bias</th>
<th>EmpSD</th>
<th>AvgSD</th>
<th>Cov95</th>
<th>Bias</th>
<th>EmpSD</th>
<th>AvgSD</th>
<th>Cov95</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>ρ(0)</td>
<td>0.01</td>
<td>0.09</td>
<td>0.10</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.01</td>
<td>0.16</td>
<td>0.18</td>
<td>ρ(1)</td>
<td>−0.03</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.01</td>
<td>0.09</td>
<td>0.10</td>
<td>ρ(2)</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>0.3</td>
<td>ρ(0)</td>
<td>0.01</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.00</td>
<td>0.13</td>
<td>0.15</td>
<td>ρ(1)</td>
<td>−0.03</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.01</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(2)</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>0.5</td>
<td>ρ(0)</td>
<td>0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(0)</td>
<td>0.02</td>
<td>0.08</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.00</td>
<td>0.13</td>
<td>0.15</td>
<td>ρ(1)</td>
<td>−0.03</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(2)</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>0.7</td>
<td>ρ(0)</td>
<td>0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(0)</td>
<td>0.03</td>
<td>0.10</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>ρ(1)</td>
<td>0.01</td>
<td>0.14</td>
<td>0.18</td>
<td>ρ(1)</td>
<td>−0.03</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>ρ(2)</td>
<td>−0.00</td>
<td>0.07</td>
<td>0.08</td>
<td>ρ(2)</td>
<td>0.03</td>
<td>0.09</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Bias: biases; AvgSD: average estimated resampling-based standard deviations; EmpSD: empirical standard deviations; Cov95: coverage rates of 95% Wald confidence intervals.
Table 4.2

The WASID Example: Standard Errors under the Clayton Copula with Kendall’s τ=0, 0.2, 0.4, 0.6 and 0.8. $\hat{\beta}^{(1)}$, $\hat{\beta}^{(2)}$ and $\hat{\beta}^{(3)}$ are estimated coefficients of Treatment, Diabetes and Stenosis Percentage on T, respectively.

<table>
<thead>
<tr>
<th>τ</th>
<th>K’s tau=0</th>
<th>K’s tau=0.2</th>
<th>K’s tau=0.4</th>
<th>K’s tau=0.6</th>
<th>K’s tau=0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>$\beta^{(1)}$</td>
<td>0.79</td>
<td>0.77</td>
<td>0.78</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(2)}$</td>
<td>0.77</td>
<td>0.75</td>
<td>0.73</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(3)}$</td>
<td>2.10</td>
<td>2.04</td>
<td>2.04</td>
<td>2.04</td>
</tr>
<tr>
<td>0.10</td>
<td>$\beta^{(1)}$</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(2)}$</td>
<td>0.65</td>
<td>0.65</td>
<td>0.64</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(3)}$</td>
<td>1.83</td>
<td>1.67</td>
<td>1.79</td>
<td>1.76</td>
</tr>
<tr>
<td>0.15</td>
<td>$\beta^{(1)}$</td>
<td>0.43</td>
<td>0.41</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(2)}$</td>
<td>0.41</td>
<td>0.38</td>
<td>0.37</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(3)}$</td>
<td>1.45</td>
<td>1.38</td>
<td>1.33</td>
<td>1.26</td>
</tr>
<tr>
<td>0.20</td>
<td>$\beta^{(1)}$</td>
<td>0.51</td>
<td>0.46</td>
<td>0.40</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(2)}$</td>
<td>0.60</td>
<td>0.48</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(3)}$</td>
<td>1.76</td>
<td>1.48</td>
<td>1.42</td>
<td>1.24</td>
</tr>
<tr>
<td>0.25</td>
<td>$\beta^{(1)}$</td>
<td>0.53</td>
<td>0.50</td>
<td>0.46</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(2)}$</td>
<td>0.79</td>
<td>0.66</td>
<td>0.54</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>$\beta^{(3)}$</td>
<td>2.24</td>
<td>1.85</td>
<td>1.67</td>
<td>1.46</td>
</tr>
</tbody>
</table>