Silver-Catalyzed Vinylogous Fluorination of VinylDiazoacetates

Changming Qin and Huw M. L. Davies
Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 USA
Huw M. L. Davies: hmdavie@emory.edu

Abstract

A silver-catalyzed vinylogous fluorination of vinyldiazoacetates to generate γ-fluoro-α,β-unsaturated carbonyls is presented. Application of this method to the fluorination of farnesol and steroid derivatives was achieved.

1 Organofluorine compounds display broad utility as valuable pharmaceuticals, agrochemicals, materials and tracers for positron emission tomography. γ-Fluoro-α,β-unsaturated carbonyls represent a versatile class of intermediates in organic synthesis and are prevalent motifs in biologically relevant compounds such as steroids, amino acids and metallolprotease inhibitors. Traditional approaches for the synthesis of γ-fluoro-α,β-unsaturated carbonyls mainly rely on electrophilic fluorination of conjugated enol ethers and Wittig-type reaction of α-fluoro aldehydes or ketones. Recently, we and others have described that metal-stablized vinylcarbenes derived from vinyldiazoacetates can selectively display electrophilic reactivity at the vinylogous position instead of the carbene site. This type of behavior is especially favorable when silver catalysts are used. In this communication, we report a silver-catalyzed vinylogous fluorination to generate highly functionalized γ-fluoro-α,β-unsaturated carbonyls (eq. 1).

Our fluorination study began with examination of different fluoride sources using the styryldiazoacetate 1 as the model substrate. Among fluoride sources examined, many of the standard nucleophilic sources of fluoride failed to give any fluorinated products (Table 1, entries 1–6), but Deoxo-Fluor and DAST can provide the desired product 2 in 44% and 55% yield, respectively (Table 1, entries 7 and 8). The use of triethylamine trihydrogen fluoride dramatically improved the yield to 90% (Table 1, entry 9). After determining the

Correspondence to: Huw M. L. Davies, hmdavie@emory.edu.

Supporting Information Available: Experimental procedures and characterization and spectral data for new compounds. This material is available free of charge via the Internet at http://pubs.ac.org.
effect of different silver salts (Table 1, entries 9–11), we chose silver acetate and triethylamine trihydrogen fluoride in dichloromethane as our standard fluorination conditions. In all of these reactions, the ratio of vinylogous versus carbenoid fluorination is > 20/1.

Having developed the optimized conditions, the scope of the vinylogous fluorination was examined with a variety of vinyldiazo derivatives. The reaction was found to be quite general as illustrated in Scheme 1. The size of ester group (tert-butyl to methyl) did not affect the efficiency of this reaction, affording the desired products 4a–c in high yields (92–94%). A particularly interesting example is the substrate 3d with a substituted allyl ester. The desired product 4d was isolated in 85% yield and no intramolecular cyclopropanation was observed. Moreover, when an amide was used as the acceptor group, the reaction can still afford the desired product 4e in 60% isolated yield. The reaction can tolerate a variety of functionality on the aryl group as illustrated by 4f–o (63–96%). Furthermore, the reaction can also be expanded to alkyl-substituted vinyldiazoacetates as seen from 4p–r (81–86%).

To further evaluate the fluorination method, we designed and synthesized di-substituted vinyldiazoacetates 5a–g. When these vinyldiazoacetates were subjected to the standard conditions, the fluorinated products 6a–g containing quaternary carbon-centers were readily formed in good to excellent yields (75–91%) with a variety of aryl- and alkyl-substituted vinyldiazoacetates (Scheme 2). A particularly interesting example is the synthesis of the fluorinated farnesol derivative 6g.

Fluorinated steroids constitute an important class of molecules with significant biological activity.11 Therefore, we sought to apply this method to late-stage fluorination of steroids (Scheme 3). The steroidal diazo derivatives 7 and 9 were readily formed by a diazo transfer reaction on the corresponding steroids. Under slightly modified reaction conditions using silver triflate, diazo 7 and 9 can be converted to the desired fluorinated steroids 8 and 10 in 56% and 60% yield, respectively. An intriguing feature of this fluorination process is the selective formation of the 6-β-fluoro isomer. A similar selectivity has been seen in vinylogous hydroxylation of steroidal diazo via silver catalysis and has been rationalized to be due to stereoelectronic effects from the conformation of the steroid used.6e

Considerable interest has been shown in developing fast fluorination methods because they may be useful in developing positron emission tomography (PET tracers with \(^{18}\text{F}\) labeling, \(^{18}\text{F}\) half-life: 110 min).12 Metal-catalyzed reactions of diazo compounds can be extremely fast13 and accordingly we explored the possibility of achieving fast fluorination. Indeed, fluorination of vinyldiazoacetate 3c in 80% isolated yield was achieved in 5 min when 20 mol% of silver triflate was used as catalyst (Scheme 4).

In summary, we have developed a silver catalyzed vinylogous fluorination of vinyldiazoacetates. This novel methodology is operationally simple and provides a diverse range of \(\gamma\)-fluoro-\(\alpha,\beta\)-unsaturated carbonyl building blocks. The method offers a strategy for rapid late-stage generation of fluorinated compounds that may be used in the synthesis PET radioligands. Future work will be directed towards developing an enantioselective version of this fluorination methodology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by the National Institutes of Health (GM099142).
References

Scheme 1.
Synthesis of Secondary Allylic Fluorides

\[\text{Vinyldiazoacetate (0.4 mmol, 1.0 equiv), silver catalyst (10 mol %), triethylamine trihydrogen fluoride (322 mg, 5.0 equiv), under refluxing in dichloromethane.} \]

\[\text{NMR yield using dibromomethane as internal standard due to product decomposition upon silica gel chromatography.} \]

\[\text{20 mol% AgOTf and 10 equiv. of Et}_3\text{N-3HF.} \]

\[4\text{a}, 92\% \]
\[4\text{b}, 92\% \]
\[4\text{c}, 94\% \]
\[4\text{d}, 85\% \]
\[4\text{e}, 60\% \]
\[4\text{f}, 96\%^b \]
\[4\text{g}, 95\%^b \]
\[4\text{h}, 87\% \]
\[4\text{i}, 63\%^c \]
\[4\text{j}, 87\% \]
\[4\text{k}, 85\% \]
\[4\text{l}, 89\% \]
\[4\text{m}, 80\% \]
\[4\text{n}, 83\% \]
\[4\text{o}, 74\% \]
\[4\text{p}, 85\% \]
\[4\text{q}, 86\% \]
\[4\text{r}, 81\% \]

\[\text{Org Lett. Author manuscript; available in PMC 2014 December 20.} \]
Scheme 2.
Synthesis of Tertiary Allylic Fluorides

Vinyldiazoacetate (0.4 mmol, 1.0 equiv), silver catalyst (10 mol %), triethylamine trihydrogen fluoride (322 mg, 5.0 equiv), under refluxing in dichloromethane.

6a, 91%

6b, 82%

6c, 75%

6d, 89%

6e, 80%

6f, 88%

6g, 85%
Scheme 3.
Late-Stage Fluorination of Steroids

Org Lett. Author manuscript; available in PMC 2014 December 20.
Scheme 4.
Rapid Fluorination Conditions
Table 1

Vinylogous Fluorination Optimizationa

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>fluoride</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AgOAc</td>
<td>TMAF</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>AgOAc</td>
<td>TBAFc</td>
<td><5</td>
</tr>
<tr>
<td>3</td>
<td>AgOAc</td>
<td>TBABF</td>
<td><5</td>
</tr>
<tr>
<td>4</td>
<td>AgOAc</td>
<td>KHF$_2$</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>AgOAc</td>
<td>Fluolead™</td>
<td><5</td>
</tr>
<tr>
<td>6</td>
<td>AgOAc</td>
<td>TASF</td>
<td><5</td>
</tr>
<tr>
<td>7</td>
<td>AgOAc</td>
<td>Deoxo-Fluor</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>AgOAc</td>
<td>DAST</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>AgOAc</td>
<td>Et$_3$N-3HF</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>AgSbF$_6$</td>
<td>Et$_3$N-3HF</td>
<td>88</td>
</tr>
<tr>
<td>11</td>
<td>AgOTf</td>
<td>Et$_3$N-3HF</td>
<td>90</td>
</tr>
</tbody>
</table>

aVinyldiazoacetate (0.4 mmol, 1.0 equiv), silver catalyst (10 mol %), fluoride source (2.0 mmol, 5.0 equiv), under refluxing in dichloromethane.

bIsolated yield, <5 refers to no observation of product 2 from 1H NMR analysis prior to chromatography.

c1.0 M in THF.

dDry DMF as solvent at 90 °C.