Effect of lifestyle interventions on glucose regulation among adults without impaired glucose tolerance or diabetes: A systematic review and meta-analysis

Mohammed Ali, Emory University
Felipe Lobelo, Emory University
X Zhang, Ctr Dis Control & Prevent
G Imperatore, Ctr Dis Control & Prevent
W Thomas, Ctr Dis Control & Prevent
YJ Cheng, Ctr Dis Control & Prevent
K Norris, Fulton DeKalb Hosp Author
HM Devlin, Ctr Dis Control & Prevent
S Gruss, Ctr Dis Control & Prevent
B Bardenheier, Ctr Dis Control & Prevent

Only first 10 authors above; see publication for full author list.

Journal Title: Diabetes Research and Clinical Practice
Volume: Volume 123, Number
Publisher: ELSEVIER IRELAND LTD | 2017-01-01, Pages 149-164
Type of Work: Article
Publisher DOI: 10.1016/j.diabres.2016.11.020
Permanent URL: https://pid.emory.edu/ark:/25593/v0xw7

Final published version: http://dx.doi.org/10.1016/j.diabres.2016.11.020

Accessed November 10, 2019 7:35 AM EST
Effect of Lifestyle Interventions on Glucose Regulation among Adults without Impaired Glucose Tolerance or Diabetes: A Systematic Review and Meta-Analysis

Xuanping Zhang1, Giuseppina Imperatore1, William Thomas2, Yiling J. Cheng1, Felipe Lobelo3, Keri Norris4, Heather M. Devlin1, Mohammed K. Ali3, Stephanie Gruss1, Barbara Bardenheier1, Pyone Cho1, Isabel Garcia de Quevedo5, Uma Mudaliar3, Jinan Saaddine1, Linda S. Geiss1, and Edward W. Gregg1

1Division of Diabetes Translation, National Centers for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

2Office of Public Health Scientific Services, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Corresponding Author: Xuanping Zhang, Address: 4770 Buford Hwy, NE, MS: F-75, Atlanta, Georgia 30341, USA, xbz2@cdc.gov, Tel: +0117704885037 Fax: +0117704888550.

Author Contributions: XZ designed the study, wrote the protocol and manuscript, and conducted all statistical analyses. WT contributed to the acquisition of data. XZ GI WT YJC FL KN HMD MKA SG BB PC IGQ UM JS LSG EWG contributed to abstract screening, data abstraction, and manuscript revision. XZ is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflicts of interest disclosures: No actual or potential conflicts of interest exist.
This study systematically assessed the effectiveness of lifestyle interventions on glyemic indicators among adults (≥18 years) without IGT or diabetes. Randomized controlled trials using physical activity (PA), diet (D), or their combined strategies (PA+D) with follow-up ≥12 months were systematically searched from multiple electronic-databases between inception and April 17, 2015. Outcome measures included fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), fasting insulin (FI), homeostasis model assessment-estimated insulin resistance (HOMA-IR), and bodyweight. Included studies were divided into low-range (FPG <5.5mmol/L or HbA1c <5.5%) and high-range (FPG ≥5.5mmol/L or HbA1c ≥5.5%) groups according to baseline glycemic levels. Seventy-one studies met inclusion criteria. Random-effect models demonstrated that compared with usual care, lifestyle interventions achieved significant reductions in FPG (−0.14mmol/L [95% CI, −0.18, −0.09]), HbA1c (−0.05% [−0.08, −0.03]), FI (%change: −15.18% [−20.01–10.35]), HOMA-IR (%change: −22.66% [−29.19, −16.14]), and bodyweight (%change: −4.00% [−4.73, −3.26]). The same effect sizes in FPG reduction (0.08) appeared among both low-range and high-range groups. Similar effects were observed among all groups regardless of lengths of follow-up. D and PA+D interventions had larger effects on glucose reduction than PA alone. Lifestyle interventions significantly improved FPG, HbA1c, FI, HOMA-IR, and bodyweight among adults without IGT or diabetes, and might reduce progression of hyperglycemia to type 2 diabetes mellitus.

Keywords
Lifestyle intervention; glucose regulation; systematic review; meta-analysis

1. Introduction

Diabetes imposes a large burden on human health, society, and the economy due to its wide-ranging complications and extensive treatment costs [1]. Physical inactivity, unhealthy diet, and obesity are well-established risk factors for type 2 diabetes mellitus, and structured lifestyle interventions incorporating behavior change, dietary modifications, and regular moderate-intensity physical activity resulting in modest weight reduction have been shown to reduce type 2 diabetes mellitus incidence [2–4]. However, for practical reasons of statistical power and study cost, the major diabetes prevention trials have focused on the subset of individuals with impaired glucose tolerance (IGT) rather than these other risk factors [2–4]. This has raised considerable debate about whether structured lifestyle interventions should be limited to people with IGT or could be applied more broadly to the population that includes individuals without IGT.
In studies among persons with normal glucose levels, researchers need large sample sizes and long follow-up periods for exploring the effect of lifestyle interventions on reducing the incidence of diabetes, making these studies costly and difficult to conduct [5]. However, a systematic review and meta-analysis of aggregate data from studies of lifestyle interventions among people without IGT may provide evidence of the impact of such interventions on risk factors for diabetes or on the potential to prevent type 2 diabetes mellitus.

We conducted a systematic review to assess the aggregated impact of lifestyle interventions on glycemic indicators among adults (≥18 years) without IGT or diabetes.

2. Methods

2.1. Data source and searches

We developed a study protocol following Cochrane Collaboration standards [6]. We systematically searched MEDLINE, EMBASE, CINAHL, Web of Science, Cochrane Library, and PsychInfo databases, from inception to April 17, 2015. Medical Subject Headings, text words, and search strategies are available from the authors. We examined reference lists of all studies and relevant reviews for potential additional studies. We directly contacted authors to clarify unclear data.

2.2. Study selection

We selected randomized controlled trials (RCTs) published in any language that examined lifestyle strategies involving physical activity (PA), diet (D), or their combination (PA+D) among adults (≥18 years), and with at least 1 glycemic indicator reported as the intervention outcome (e.g., fasting plasma glucose [FPG], glycated hemoglobin A1c [HbAlc], fasting insulin [FI], and homeostasis model assessment-estimated insulin resistance [HOMA-IR]) with a follow-up interval ≥12 months. Included studies investigated individuals without IGT or diabetes. We excluded all studies among individuals with IGT confirmed by 2-hour oral glucose tolerance test (OGTT) (75g). We included studies regardless of baseline glucose levels. However, we classified studies with mean baseline FPG <5.5mmol/L or HbA1c <5.5% as the low-range group, and with mean baseline FPG ≥5.5mmol/L or HbA1c ≥5.5% as the high-range group, and analyzed data as a whole and by glycemic level groups.

2.3. Data extraction and quality assessment

One primary reviewer and a secondary reviewer independently assessed the manuscript titles and abstracts for inclusion. If any disagreement occurred between the 2 reviewers, a third reviewer reviewed the item, and consensus was reached by a discussion. The study team extracted data regarding demographic and intervention characteristics. Primary outcomes in this review included FPG, A1C, FI, and HOMA-IR. In our synthesis models, we used percent changes in FI and HOMA-IR, rather than raw values, to account for non-standardized insulin measurements. We also examined percent body weight change from baseline.

In our review, all interventions were classified into 3 categories: PA, D, and their combination. PA interventions included any strategy to increase physical activity levels.
using counseling, exercise prescription, or a supervised or unsupervised exercise program. The D interventions included any strategy used to reduce or control calorie intake, such as very low-calorie diet (<800 kcal/d) or low-calorie diet (800 to 1500 kcal/d). PA+D interventions usually also employed a behavioral modification component, such as counseling, education, cognitive-behavioral therapy, or social support.

We assessed study quality by examining potential selection, attrition, and detection bias [6]. We excluded from our main analyses studies of poor quality (e.g., studies with attrition ≥30%). However, we conducted a sensitivity analysis to compare pooled effects between studies with potentially significant bias and those without. For example, for those studies with attrition ≥30%, data were not used in our primary meta-analyses, but were used in our sensitivity analyses.

2.4. Data Synthesis and Analysis

If 2 or more studies with similar intervention and comparison groups reported a similar outcome of interest, we conducted a meta-analysis to determine pooled effects. We calculated the mean difference between baseline and follow-up measures for the intervention and comparison groups (delta I and delta C) and the standard error of each difference. We used 3 data synthesis strategies to estimate pooled effects: stratification by glycemic levels, stratification by follow-up duration, and stratification by type of intervention.

We used the DerSimonian and Laird random-effects model [7] to determine pooled effects. We used meta-regression to determine whether various study-level characteristics (mean age, follow-up duration, duration of the intervention, number of intervention contacts, attrition, and year of publication) affected the between-group change in FPG, and we examined interaction terms for all models. We also used meta-regression to test if there is an association between the magnitude of body weight change and the magnitude of FPG change. The meta-regression was conducted using SPSS (version 20.0, Armonk, NY: IBM Corp.). We used the chi-squared test to examine heterogeneity, and Cochrane Review Manager software (version 5.1; Copenhagen, Denmark) to calculate pooled effects. Effect size was defined by the mean difference between delta I and delta C divided by the standard deviation of the mean.

If a comparison group in a study used a similar approach as the intervention group, but only differed in dose, intensity, or frequency (e.g., diet plan A vs diet plan B; or swimming vs walking), we analyzed the effects of treatment in a single-arm model to determine within-group changes (between post-intervention and pre-intervention in 1 arm) for both intervention and comparison group. These effects were also estimated by using the DerSimonian and Laird random-effects model. We did not conduct sensitivity analysis for these studies.

3. Results

Seventy-one studies [8–78] (plus 30 additional publications based on those studies [79–108]) encompassing 13943 participants (Table 1: range, 20 to 1089) fulfilled the inclusion criteria (Figure 1). Follow-up duration ranged from 12 to 54 months. The weighted mean
The age of the participants was 50.9 years (range, 30.2 to 70.4 years), and mean body mass index (BMI) was 30.1 kg/m² (range, 23.3 to 38.7 kg/m²). Mean baseline FPG, HbA1c, FI, and HOMA-IR were 5.3 mmol/L, 5.4%, 13.7 μU/ml, and 3.9, respectively. More studies took place in a community setting vs a clinic setting (52 vs 19). Sampling methods varied, but most participants were recruited through screening programs. Attrition ranged from 0% to 60%, and was 30% or more in 15 studies [8,20–22,31,44,46,49,51,57,60,62,64,70,78]; higher attrition rates were associated with longer follow-up duration. Thirty-eight studies with FPG <5.5mmol/L or HbA1c <5.5% were classified as low-range glycemic level studies, and 33 studies with FPG ≥5.5mmol/L or HbA1c ≥5.5% were classified as high-range glycemic level studies (Table 1).

We observed considerable heterogeneity in the treatments provided to both intervention and comparison groups (Table S1 and Table S2, presented online as supplementary materials). In 27 studies, a similar approach was used in both intervention and control groups (data from these studies were synthesized by a single-arm model). In the other 44 studies, the control group received usual care (UC). In the 44 studies that compared an intervention to UC, 32 had 2 arms [8–10,14,17,18,22,27–29,32,38,40,42,43,45,47,52–59,62,67,69,70,72,76,104], 5 studies [34,48,71,72,75] had 3 arms, and 7 studies [11,15,30,39,46,65,77] had 4 arms (e.g., PA, D, PA+D and control arm). The randomization procedure was described in 43 studies (Table S2). Allocation concealment (i.e., blinding) was adequately reported in 26 studies. Meta-regression analyses indicated that there was no significant interaction between the between-group change in FPG and any study-level characteristic. An Egger’s plot demonstrated a symmetrical shape distribution (except for 2 outliers) which supports a hypothesis of no publication bias.

3.1. Changes in Glycemic Indicators

In 52 studies or study arms comparing interventions to UC with attrition <30%, the pooled effect estimate from all studies demonstrated that compared to UC, lifestyle interventions—including PA, D, or PA+D—achieved significant reductions in FPG (−0.14 mmol/L [95% CI, −0.18, −0.09]), HbA1c (−0.05% [−0.08, −0.03]), FI (percent change: −15.18% [−20.01, −10.35]), HOMA-IR (percent change: −22.66% [−29.19, −16.14]), and body weight (percent change: −4.00% [−4.73, −3.26]) (Table 2). Sensitivity analyses including studies with attrition ≥30% in the model produced similar results.

3.1.1. Comparison According to Participant Baseline Glycemic Status (Limited to studies with attrition <30% thereafter)

In studies among persons with low-range glycemic status, lifestyle interventions were associated with significantly reduced FPG (−0.08 mmol/L [−0.11, −0.04]), HbA1c (−0.07% [−0.14, −0.01]), FI (percent change: −11.69% [−16.99, −6.38]), HOMA-IR (percent change: −13.11% [−24.60, −1.61]), and body weight (percent change: −3.71% [−4.86, −2.56]). In studies among persons with high-range glycemic status, lifestyle interventions decreased FPG (−0.19 mmol/L [−0.26, −0.12]), HbA1c (−0.05% [−0.08, −0.02]), FI (percent change: −16.56% [−23.14, −9.98]), HOMA-IR (percent change: −28.05% [−35.43, −20.67]), and body weight (percent change: −4.19% [−5.19, −3.18]). Notably, intervention effects on FPG differed in absolute values.
(−0.08mmol/L in low-range vs −0.19mmol/L in high-range groups), but the effect sizes were the same across groups (0.08).

3.1.2. Comparison According to Length of Follow-Up—Similar reductions in FPG and percent body weight were achieved in 12 months of follow-up (−0.10mmol/L [−0.14, −0.07]), 13–23 months (−0.15mmol/L [−0.21, −0.09], and −3.28% [−4.39, −2.17]), and ≥24 months (−0.12mmol/L [−0.23, −0.001], and −3.58% [−4.98, −2.19]). Meta-regression analyses demonstrated that the association between the magnitude of percent body weight change and the magnitude of FPG change was not significant (P = 0.183, and the R² for correlation between percent body weight change and FPG change was very low [0.037]).

3.1.3. Comparison According to Intervention Modality—Analyses stratified by intervention types showed that each type was effective, with D vs UC achieving the highest reduction in FPG (−0.17mmol/L [−0.27, −0.08]), followed by PA+D vs UC (−0.15mmol/L [−0.21, −0.09]), and then PA vs UC (−0.07mmol/L [−0.11, −0.03]). Reduction in body weight followed a similar pattern, with greater weight loss among comparisons of D vs UC (−6.21% [−8.63, −3.19]) and PA+D vs UC (−4.15% [−5.02, −3.27]) than for PA vs UC (−1.55% [−2.53, −0.57]). Similar patterns were also observed for percent changes in FI and HOMA-IR with PA+D vs UC (FI: −18.25% [−24.18, −12.32], HOMA-IR: −24.69% [−32.15, −17.23]), followed by D vs UC (FI: −13.73% [−28.64, 1.18], HOMA-IR: −24.24% [−37.21, −11.27]), and PA vs UC (FI: −7.61% [−15.52, 0.30], HOMA-IR: −7.25% [−19.02, 4.51]). Pooled effects of interventions on FPG are shown in Figure 2 and meta-analyses results in a single arm model are presented online as Table S3.

4. Discussion

The target population for type 2 diabetes mellitus prevention has been a topic of debate since the completion of major diabetes prevention trials [109]. The difficulty stems from observations that diabetes prevalence has increased across all segments of society [110], yet the evidence for preventive interventions is mainly limited to persons with IGT [2–4,111,112]. This comprehensive review of the effects of structured lifestyle interventions yielded 3 main findings.

First, lifestyle interventions among individuals with lower risk than those with IGT and diabetes led to significant improvements in FPG, HbA1c, and FI among the full range of baseline risk, with no apparent differences measured by effect sizes between studies of persons with low-range vs high-range glycemic levels. The average magnitude of effect of 1-year change in FPG of about −0.3mmol/L was about 40% of the magnitude of effect seen among persons with IGT in the U.S. Diabetes Prevention Program and the Finnish Diabetes Prevention Study, wherein lifestyle interventions resulted in a −0.2mmol/L glucose change and a 58% reduced incidence of diabetes [2]. The findings from our meta-analyses imply that the reduction in glucose may bring about similar diabetes risk reductions among population without IGT.
Second, interventions that focused only on PA without a concomitant calorie restriction had weaker effects on glycemic indicators than studies that used PA and calorie restriction, or calorie restriction alone. Third, interventions were effective across a wide variation of follow-up durations, from 1 year in 43 studies, to more than 2 years in 15 studies. Taken as a whole, our findings suggest that multi-faceted interventions combining PA and D are likely to be effective in improving glucose regulation and reducing risk for diabetes in populations with average low-range and high-range glucose levels.

Several components of lifestyle interventions have been associated with improved insulin-mediated glucose transport and therein reduce insulin resistance and progression to glucose intolerance. Our findings were generally supportive of the diabetes prevention trials, which suggest that multi-component interventions, including elements of calorie restriction, PA, and behavioral support are most effective in improving glucose tolerance. However, our study did not find a significant correlation between the magnitude of weight loss and magnitude of glucose benefit. Our study found slightly weaker effects for exercise-only interventions (e.g., PA alone resulted in only 1.55% weight loss, far lower than the 5% recommended by American Diabetes Association (ADA)) [113]. In addition to non-insulin mediated glucose transport in skeletal muscle, exercise programs have been shown to have important independent effects on insulinmediated glucose regulation, markers of inflammation, insulin resistance, blood pressure, lipid profile, fitness, and improved lean-to-fat mass ratio [114]. Given the fact that PA provides more benefits than just weight loss does, we need to take those extra benefits into account when we interpret our findings.

Our finding of no difference in effect by follow-up duration has potentially encouraging implications for the implementation of preventive interventions. Weight loss programs typically lead to a nadir of weight loss around 6 months followed by a gradual weight regain. Even programs with intensive attention to weight maintenance typically result in a 50% average weight regain over 3 to 4 years. Our findings that changes in glucose were as great in studies with longer (≥ 2 years) as shorter (12 months) follow-up duration suggest that the between-group improvement in FPG could persist [27–29,42,76]. These findings echo the extended benefits found in the Da Qing legacy study [115]. It is worth noting that most of these studies applied a PA+D strategy and included some behavioral modification components.

Our findings have important implications for the definitions of diabetes risk groups as well as clinical and public health strategies to reduce diabetes incidence. Despite strong evidence that lifestyle interventions can reduce diabetes incidence, the RCT evidence is limited to individuals with IGT. However, roughly 60% of individuals with ADA-defined pre-diabetes (measured by IFG: 5.6–6.9 mmol/L) [116] and 70% of those with World Health Organization-defined intermediate hyperglycemia (measured by IFG: 6.1–7.7 mmol/L) [117] do not have IGT. Individuals with isolated IFG are thought to be more affected by beta cell dysfunction than by insulin resistance and thus may be less likely to benefit from lifestyle interventions. This has fueled continued debate over who should be targeted for diabetes prevention programs. Our findings suggest that lifestyle interventions are likely to have important benefits across the full distribution of HbA1c and fasting glucose and insulin levels. However, the types of interventions that should be applied to individuals with low to
moderate levels of glycemic risk are ultimately influenced by economic factors as well as the effectiveness of interventions. Economic analyses have shown that structured lifestyle interventions are considerably more cost-effective when applied to persons at the high end of the FPG and HbA1c distribution [118,119]. Comprehensive strategies to reduce incidence likely require graduated tiers of interventions. Population-wide approaches to improve nutrition and PA will likely provide benefit to the entire population, but the magnitude of that benefit is unknown. A comprehensive approach that includes both effective population-wide approaches along with structured lifestyle interventions proven to be effective should be the goal.

There are several limitations in our study. First, only 2 studies reported the number of cases of diabetes, thus precluding even pooled estimates of the effect of the interventions on diabetes incidence rates. This reflects the fact that an intervention trial of diabetes incidence conducted among persons in the low- to high-range glucose status (from normal glucose [<5.5mmol/L] - below the IGT threshold) would require large sample sizes (i.e. several thousand participants) over several years.

Second, the large number of studies evaluated lends itself to many sources of heterogeneity, including intervention type, dose, intensity, and frequency, as well as individual risk status and levels of adherence. Our analyses of heterogeneity were conducted at the study level rather than at the individual level, and thus may have lacked sensitivity to detect the impact of such factors on glycemic indicators. Although the study population was diverse in terms of age, race/ethnicity, and sex, we were unable to test whether intervention effectiveness varied across these factors. An advantage of such diversity in our review, however, is that the effect sizes may be more reflective of real-world variation than those observed in a single large RCT.

Third, although we attempted to quantify and stratify by level of glycemic risk, there was considerable heterogeneity within studies that prevented a clean classification. As a result, there was likely considerable overlap in participant characteristics between the low-range group and high-range group in our study. A precise determination of how intervention effectiveness varies by baseline levels of glycemia may require individual level data.

Despite these limitations, this is the first comprehensive compilation of the impact of lifestyle interventions on risk for progression of dysglycemia among individuals below the IGT threshold. This comprehensive systematic review suggests that lifestyle change is important for diabetes prevention across the full spectrum of risk, complementing the major trials of diabetes incidence that focused on individuals with IGT. Decisions about how to implement prevention in practice ultimately depend on a wider set of factors, including the cost of delivering different types of interventions and the disease incidence level in the target population. For example, structured lifestyle interventions have been found to be considerably more cost-effective among persons with higher levels of HbA1c or FPG because applying interventions to persons with a higher incidence of diabetes lead to greater reduction in costs of complications and health care utilization. Thus, multiple intervention tiers may be warranted for diabetes prevention, with intense structured programs delivered to
persons at higher risk, and population-targeted policies aimed at making healthier food and physical activity choices easier for the lower end of the diabetes risk distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement:

We thank Drs. Ann Albright, Elizabeth Luman, and Sharon Saydah for their very helpful comments on revising our manuscript.

No specific funding was received for this study. This study was supported by the Centers for Disease Control and Prevention. No funding bodies had any role in the study design, data collection, analysis, decision to publish or preparation of the manuscript. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC.

References

[78]. Wycherley TP, Brinkworth GD, Clifton PM, Noakes M. Comparison of the effects of 52 weeks weight loss with either a high-protein or high-carbohydrate diet on body composition and cardiometabolic risk factors in overweight and obese males. Nutri Diabetes 2012; 2: e40–e47. [PubMed: 23448804]

Fig. 1 -- Study flow diagram. CINAHL, Cumulative Index to Nursing and Allied Health Literature. EMBASE, Excerpta Medica Database. MEDLINE, Medical Literature Analysis and Retrieval System Online. PsycINFO, Psychological Information Database. WOS, Web of Science.
Fig. 2 --
Changes in fasting plasma glucose in the intervention versus usual care groups (mmol/L).
Group 1: low-range glycemic group (FPG < 5.5 mmol/L or HbA1c < 5.5%). Group 2: high-range glycemic group (FPG ≥ 5.5 mmol/L or HbA1c ≥ 5.5%). D, diet. PA, physical activity. UC, usual care. vs versus.
Characteristics of Study Participants

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Race/Ethnicity</th>
<th>Age at baseline (range)</th>
<th>Sex</th>
<th>Race/Ethnicity</th>
<th>BMI at baseline (SD)</th>
<th>Inclusion criteria</th>
<th>Attrition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al.</td>
<td>2012</td>
<td>White</td>
<td>20–29</td>
<td>12</td>
<td>NR</td>
<td>26.8 (5.0)</td>
<td>People with ADA risk score >10 and casual FPG ≥6.1 mmol/L</td>
<td>12.0%</td>
</tr>
<tr>
<td>Craigie et al.</td>
<td>2014</td>
<td>White</td>
<td>20–29</td>
<td>12</td>
<td>NR</td>
<td>23.2 (10.1)</td>
<td>Recruited from a continuously ongoing screening program</td>
<td>4.6%</td>
</tr>
<tr>
<td>Jacob et al.</td>
<td>2009</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>25.4 (10.1)</td>
<td>Using a computer-generated randomization list</td>
<td>7.8%</td>
</tr>
<tr>
<td>Brinkworth et al.</td>
<td>2004</td>
<td>White</td>
<td>18–65</td>
<td>12</td>
<td>NR</td>
<td>26.5 (6.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>6.2%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2004</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Using a computer-generated randomization list</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2004</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2011</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2012</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2013</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2014</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
<tr>
<td>Burke et al.</td>
<td>2015</td>
<td>White</td>
<td>18–70</td>
<td>12</td>
<td>NR</td>
<td>29.0 (3.9)</td>
<td>Recruited by physicians through memberscreening and TV ads</td>
<td>36.0%</td>
</tr>
</tbody>
</table>

Note: ADA = American Diabetes Association, DM = diabetes mellitus, FPG = fasting plasma glucose, BMI = body mass index, CVD = cardiovascular disease.
<table>
<thead>
<tr>
<th>Citation</th>
<th>Sample size</th>
<th>Length of follow-up (months)</th>
<th>Age at baseline (mean, SD) (years)</th>
<th>Sex (% females)</th>
<th>Setting, Race/Ethnicity</th>
<th>BMI at baseline (kg/m²) mean (SD)</th>
<th>FPG at baseline (mmol/L) mean (SD)</th>
<th>HbA1c at baseline (%) mean (SD)</th>
<th>Inclusion criteria</th>
<th>Sampling method</th>
<th>Attrition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al. 2008</td>
<td>119</td>
<td>12</td>
<td>49.0 (9.0)</td>
<td>100.0</td>
<td>Community, Adelaide, Australia</td>
<td>32.8 (5.5)</td>
<td>6.1 (0.5)</td>
<td>5.9 (0.5)</td>
<td>Women, aged 20-65 yrs, BMI > 27 kg/m², without DM, or without liver disease</td>
<td>Recruited from public ads and screened by questionnaire</td>
<td>55.0</td>
</tr>
<tr>
<td>Cole et al. 2013</td>
<td>96</td>
<td>12</td>
<td>58.3 (9.6)</td>
<td>46.0</td>
<td>Community, San Antonio, Texas; 46.0% white, 11.0% black, 19.0% Hispanic</td>
<td>30.8 (6.9)</td>
<td>6.1 (0.5)</td>
<td>NR</td>
<td>Aged > 30 yrs, without DM, BMI > 30 kg/m², or without liver disease</td>
<td>Recruited from a DM education clinic</td>
<td>31.0</td>
</tr>
<tr>
<td>Conroy et al. 1999</td>
<td>20</td>
<td>12</td>
<td>59.5 (7.5)</td>
<td>0.0</td>
<td>Community, Baltimore, MD</td>
<td>29.0 (3.6)</td>
<td>5.4 (0.5)</td>
<td>NR</td>
<td>Aged > 40 yrs, healthy persons without DM</td>
<td>Recruited by ads</td>
<td>0.0</td>
</tr>
<tr>
<td>Cox et al. 2006 & 2009</td>
<td>116</td>
<td>12</td>
<td>55.5 (4.7)</td>
<td>100.0</td>
<td>Community, Bath, Australia</td>
<td>26.4 (3.3)</td>
<td>5.1 (0.4)</td>
<td>NR</td>
<td>Aged > 30 yrs, BMI > 30 kg/m², without endocrine disorders</td>
<td>Recruited by ads</td>
<td>25.9</td>
</tr>
<tr>
<td>Drieze et al. 1999 & 2001</td>
<td>100</td>
<td>24</td>
<td>68.0 (10.0)</td>
<td>70.0</td>
<td>Clinic, Germany</td>
<td>33.4 (5.6)</td>
<td>5.0 (0.6)</td>
<td>NR</td>
<td>Aged > 50 yrs, BMI > 25 kg/m², without endocrine disorders</td>
<td>Recruited from referring to the obesity clinics</td>
<td>27.0</td>
</tr>
<tr>
<td>Donnelly et al. 2000</td>
<td>22</td>
<td>18</td>
<td>51.5 (8.5)</td>
<td>100.0</td>
<td>Community, Kansas City, NE</td>
<td>31.2 (4.0)</td>
<td>5.5 (0.4)</td>
<td>NR</td>
<td>BMI > 29 kg/m², low aerobic capacity, at risk for continued weight gain</td>
<td>Recruited from a DM education clinic</td>
<td>0.0</td>
</tr>
<tr>
<td>Esposito et al. 2003</td>
<td>120</td>
<td>24</td>
<td>34.6 (5.0)</td>
<td>100.0</td>
<td>Clinic, Naples, Italy</td>
<td>34.9 (2.4)</td>
<td>5.9 (0.8)</td>
<td>NR</td>
<td>14.0 (4.0) IOMA-IR: 7.0</td>
<td>Recruited from a outpatient clinic</td>
<td>6.7</td>
</tr>
<tr>
<td>Esposito et al. 2004a</td>
<td>110</td>
<td>24</td>
<td>45.5 (5.0)</td>
<td>0.0</td>
<td>Clinic, Naples, Italy</td>
<td>36.7 (2.4)</td>
<td>5.8 (0.6)</td>
<td>NR</td>
<td>28.0 (7.5) IOMA-IR: 7.0</td>
<td>Recruited from a outpatient clinic</td>
<td>5.5</td>
</tr>
<tr>
<td>Esposito et al. 2004b & gonadotropins 2009</td>
<td>180</td>
<td>24</td>
<td>45.0 (6.2)</td>
<td>45.0</td>
<td>Clinic, Naples, Italy</td>
<td>28.0 (3.3)</td>
<td>6.5 (0.6)</td>
<td>NR</td>
<td>15.5 (6.5) IOMA-IR: 7.0</td>
<td>Recruited from a screening program</td>
<td>8.9</td>
</tr>
<tr>
<td>Fatooko et al. 2004</td>
<td>50</td>
<td>12</td>
<td>40 (3.8)</td>
<td>0.0</td>
<td>Community, Athens, Greece</td>
<td>29.5 (3.3)</td>
<td>5.9 (0.7)</td>
<td>NR</td>
<td>14.0 (3.3) IOMA-IR: 7.0</td>
<td>Recruited from a volunteer database in local community</td>
<td>0.0</td>
</tr>
<tr>
<td>Fatooko et al. 2005</td>
<td>40</td>
<td>12</td>
<td>40.8 (5.9)</td>
<td>67.5</td>
<td>Community, Leon, Spain</td>
<td>51.6 (2.4)</td>
<td>4.6 (0.9)</td>
<td>NR</td>
<td>21.2 (2.7) IOMA-IR: 7.0</td>
<td>Recruited from a clinic trial</td>
<td>60.0</td>
</tr>
<tr>
<td>Fatooko et al. 2012</td>
<td>40</td>
<td>12</td>
<td>46.6 (4.6)</td>
<td>15.5</td>
<td>Community, Greens, Spain</td>
<td>28.0 (5.0)</td>
<td>5.6 (1.9)</td>
<td>NR</td>
<td>People with HT, BMI < 30 kg/m², nonsmokers with elevated risk of CVD</td>
<td>Recruited from a DM education clinic</td>
<td>0.0</td>
</tr>
<tr>
<td>Fatooko et al. 2012</td>
<td>97</td>
<td>12</td>
<td>age range: 45-55 y</td>
<td>100.0</td>
<td>Community, Spring, AL, 45-55 y white: 53.6% black</td>
<td>28.0 (1.0)</td>
<td>4.8 (0.4)</td>
<td>NR</td>
<td>Age > 30 yrs, BMI > 30 kg/m², nonsmokers with elevated risk of CVD</td>
<td>Recruited from a DM education clinic</td>
<td>0.0</td>
</tr>
<tr>
<td>Fugelberen et al. 2002</td>
<td>82</td>
<td>24</td>
<td>age range: 50-65 y</td>
<td>100.0</td>
<td>Community, Turku, Finland</td>
<td>34.0 (3.6)</td>
<td>5.1 (0.5)</td>
<td>NR</td>
<td>Aged 50-65 yrs, BMI > 25 kg/m², 65 yrs, physically inactive</td>
<td>Recruited by ads</td>
<td>9.8</td>
</tr>
<tr>
<td>Fudale et al. 2009</td>
<td>297</td>
<td>12</td>
<td>46.0 (8.4)</td>
<td>15.5</td>
<td>Community, Grande, Spain</td>
<td>28.0 (5.0)</td>
<td>5.6 (1.9)</td>
<td>NR</td>
<td>People with moderate risk of CVD, without DM, or pregnancy</td>
<td>Recruited from a DM education clinic</td>
<td>14.8</td>
</tr>
<tr>
<td>Frank et al. 2005</td>
<td>173</td>
<td>12</td>
<td>60 (4.7)</td>
<td>100.0</td>
<td>Community, Scolic, Washington</td>
<td>30.4 (3.9)</td>
<td>5.4 (0.5)</td>
<td>NR</td>
<td>17.0 (3.0) IOMA-IR: 7.0</td>
<td>Recruited from a screening program</td>
<td>1.7</td>
</tr>
<tr>
<td>Greene et al. 2008 & 2010</td>
<td>816</td>
<td>12</td>
<td>46.6 (9.0)</td>
<td>0.0</td>
<td>Community, Amsterdam, The Netherlands</td>
<td>28.5 (3.5)</td>
<td>NR</td>
<td>5.7 (0.4)</td>
<td>Recruited from periodical health screening</td>
<td>Recruited from a DM education clinic</td>
<td>27.6</td>
</tr>
<tr>
<td>Fleckk et al. 2003</td>
<td>423</td>
<td>24</td>
<td>46.5 (10.0)</td>
<td>84.6</td>
<td>Clinic, Westmead, Reo, Boro, Burdekin, Devon, Drift, Woodbury</td>
<td>33.7 (3.6)</td>
<td>5.0 (0.7)</td>
<td>NR</td>
<td>18.0 (5.5) IOMA-IR: 7.0</td>
<td>Recruited from periodical health screening</td>
<td>27.0</td>
</tr>
<tr>
<td>Citation</td>
<td>Sample size</td>
<td>Length of follow-up (months)</td>
<td>Age at baseline (mean, SD)</td>
<td>Sex (% female)</td>
<td>Setting, Race/Ethnicity</td>
<td>BMI at baseline (kg/m², mean, SD)</td>
<td>FPG at baseline (mmol/L, mean, SD)</td>
<td>HbA1c at baseline (%)</td>
<td>Inclusion criteria</td>
<td>Attrition (%)</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Zhang et al. 2019</td>
<td>450</td>
<td>12</td>
<td>56.0 (5.0)</td>
<td>100.0</td>
<td>Community Santa WA</td>
<td>30.9 (4.1)</td>
<td>5.4 (0.5)</td>
<td>NR</td>
<td>12.00 (1.10/10)</td>
<td>9.1%</td>
<td></td>
</tr>
<tr>
<td>Delgadillo et al. 2015</td>
<td>238</td>
<td>12</td>
<td>56.5 (16.5)</td>
<td>75.5</td>
<td>Community Berkeley, Oakland, etc</td>
<td>30.0 (5.7)</td>
<td>5.2 (0.7)</td>
<td>NR</td>
<td>NR</td>
<td>12.2%</td>
<td></td>
</tr>
<tr>
<td>Imayama et al. 2013</td>
<td>180</td>
<td>12</td>
<td>55.0 (10.0)</td>
<td>72.0</td>
<td>Clinic San Francisco, San Diego CA</td>
<td>34.3 (6.7)</td>
<td>5.8 (0.7)</td>
<td>5.9 (0.8)</td>
<td>NR</td>
<td>21.1%</td>
<td></td>
</tr>
<tr>
<td>Kaneko et al. 2016</td>
<td>301</td>
<td>24</td>
<td>57.9 (9.5)</td>
<td>100.0</td>
<td>Community Winston-Salem NC</td>
<td>32.7 (4.0)</td>
<td>5.9 (0.6)</td>
<td>NR</td>
<td>16.70 (4.10/10)</td>
<td>12.6%</td>
<td></td>
</tr>
<tr>
<td>Kaneko et al. 2009</td>
<td>217</td>
<td>17</td>
<td>60.0 (15.8)</td>
<td>66.5</td>
<td>Community Sapporo, Japan</td>
<td>23.7 (4.4)</td>
<td>5.1 (0.5)</td>
<td>5.1 (0.5)</td>
<td>NR</td>
<td>27.2%</td>
<td></td>
</tr>
<tr>
<td>Keogh et al. 2010</td>
<td>36</td>
<td>12</td>
<td>48.0 (5.2)</td>
<td>60.0</td>
<td>Community Adelaide, Australia</td>
<td>32.9 (4.5)</td>
<td>5.9 (0.5)</td>
<td>NR</td>
<td>14.80 (11.0)</td>
<td>30.0%</td>
<td></td>
</tr>
<tr>
<td>Larson et al. 2009</td>
<td>1099</td>
<td>24</td>
<td>56.0 (6.9)</td>
<td>100.0</td>
<td>Clinic Wellington New Zealand</td>
<td>29.2 (6.0)</td>
<td>5.0 (0.6)</td>
<td>5.5 (0.6)</td>
<td>NR</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td>Liu et al. 2010</td>
<td>113</td>
<td>12</td>
<td>47.0 (10.0)</td>
<td>82.3</td>
<td>Community Adelaide, Australia</td>
<td>32.8 (6.0)</td>
<td>5.4 (0.6)</td>
<td>NR</td>
<td>9.11 (10.6)</td>
<td>38.9%</td>
<td></td>
</tr>
<tr>
<td>Lombard et al. 2010</td>
<td>250</td>
<td>12</td>
<td>40.0 (4.8)</td>
<td>100.0</td>
<td>Community Melbourne Australia</td>
<td>27.8 (5.4)</td>
<td>4.6 (0.4)</td>
<td>NR</td>
<td>NR</td>
<td>14.0%</td>
<td></td>
</tr>
<tr>
<td>Ma et al. 2009, 2015</td>
<td>241</td>
<td>15</td>
<td>52.0 (10.0)</td>
<td>47.0</td>
<td>Clinic San Francisco, CA</td>
<td>32.0 (5.4)</td>
<td>5.6 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>8.3%</td>
<td></td>
</tr>
<tr>
<td>Marsh et al. 2010</td>
<td>96</td>
<td>12</td>
<td>30.0 (25.2)</td>
<td>100.0</td>
<td>Clinic Sydney Australia</td>
<td>34.5 (4.2)</td>
<td>4.8 (0.7)</td>
<td>NR</td>
<td>15.6 (10.6)</td>
<td>49.0%</td>
<td></td>
</tr>
<tr>
<td>McAuley et al. 2009, 2016</td>
<td>93</td>
<td>12</td>
<td>Range: 30–79y</td>
<td>100.0</td>
<td>Community Doncaster, New Zealand</td>
<td>35.7 (5.1)</td>
<td>5.1 (0.6)</td>
<td>NR</td>
<td>15.90 (5.6)</td>
<td>18.3%</td>
<td></td>
</tr>
<tr>
<td>Milla et al. 2014</td>
<td>70</td>
<td>24</td>
<td>50.0 (5.7)</td>
<td>100.0</td>
<td>Community Umea, Sweden</td>
<td>32.7 (3.5)</td>
<td>5.2 (1.1)</td>
<td>NR</td>
<td>8.7 (4.4)</td>
<td>30.0%</td>
<td></td>
</tr>
<tr>
<td>Moro et al. 2001</td>
<td>326</td>
<td>18</td>
<td>42.0 (5.7)</td>
<td>0.0</td>
<td>Community Tokyo, Japan</td>
<td>24.7 (3.0)</td>
<td>5.6 (1.3)</td>
<td>NR</td>
<td>NR</td>
<td>7.4%</td>
<td></td>
</tr>
<tr>
<td>Nolen et al. 1998</td>
<td>95</td>
<td>12</td>
<td>Range: 25–50y</td>
<td>75.8</td>
<td>Community Phoenix, AZ</td>
<td>Range: 20.2–59.9</td>
<td>Range: 4.2–6.5</td>
<td>Range: 24–157 (pM)</td>
<td>NR</td>
<td>2.0%</td>
<td></td>
</tr>
<tr>
<td>Nilsson et al. 1992</td>
<td>94</td>
<td>12</td>
<td>55.0 (7.2)</td>
<td>NR</td>
<td>Community Umea, Sweden</td>
<td>Weight (81.4 (1.4)</td>
<td>5.0 (0.5)</td>
<td>NR</td>
<td>17.6 (0.9)</td>
<td>8.5%</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Age at Follow-up (yr)</td>
<td>Sex (% Female)</td>
<td>Race/Ethnicity (%)</td>
<td>BMI at Follow-up (kg/m²)</td>
<td>FPG at Follow-up (mmol/L)</td>
<td>HbA1c at Follow-up (%)</td>
<td>T2DM at Follow-up (%)</td>
<td>Attrition Size (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al.</td>
<td>2353</td>
<td>18-12</td>
<td>16%</td>
<td>95%</td>
<td>27.8 (5.6)</td>
<td>4.9 (1.2)</td>
<td>8.7 (5.7)</td>
<td>NR</td>
<td>18.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nilsson et al.</td>
<td>250</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>36.1 (3.1)</td>
<td>5.8 (0.7)</td>
<td>20.0 (13.6)</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merriam et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>30.3 (3.0)</td>
<td>5.5 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poston et al.</td>
<td>226</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>29.4 (5.7)</td>
<td>5.1 (0.6)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potteiger et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>28.4 (5.6)</td>
<td>5.2 (0.6)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rossner et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>26.7 (5.6)</td>
<td>5.2 (0.6)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reid et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>24.9 (5.6)</td>
<td>5.5 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapsell et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>23.8 (5.6)</td>
<td>5.4 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vainionpaa et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>22.7 (5.6)</td>
<td>5.5 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vetter et al.</td>
<td>212</td>
<td>12</td>
<td>16</td>
<td>NR</td>
<td>21.7 (5.6)</td>
<td>5.4 (0.5)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Citation</th>
<th>Sample size</th>
<th>Age at baseline (years) mean (SD)</th>
<th>BMI at baseline (kg/m²) mean (SD)</th>
<th>FPG at baseline (mmol/L) mean (SD)</th>
<th>HbA1c at baseline (%) mean (SD)</th>
<th>Length of follow-up (month)</th>
<th>Inclusion criteria</th>
<th>Attrition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>von Thiele Schwarz et al. 2008</td>
<td>195</td>
<td>46.6 (10.8)</td>
<td>100.0</td>
<td>NR</td>
<td>5.0 (0.5)</td>
<td>4.4 (0.5)</td>
<td>Community Stockholm Sweden</td>
<td>Recruited from a public dental health care organization</td>
</tr>
<tr>
<td>Watanabe et al. 2003</td>
<td>173</td>
<td>55.1 (7.1)</td>
<td>0.0</td>
<td>Community Tokyo Japan</td>
<td>24.4 (2.9)</td>
<td>5.8 (0.4)</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Weinrock et al. 1998</td>
<td>45</td>
<td>43.1 (7.4)</td>
<td>100.0</td>
<td>Community Syracuse NY</td>
<td>35.9 (6.0)</td>
<td>5.1 (0.6)</td>
<td>NR</td>
<td>15.4 (6.9)</td>
</tr>
<tr>
<td>Wren et al. 2006</td>
<td>46</td>
<td>56.8 (5.0)</td>
<td>65.2</td>
<td>Community St. Louis MO</td>
<td>27.3 (2.1)</td>
<td>5.5 (0.4)</td>
<td>NR</td>
<td>7.6 (5.1)</td>
</tr>
<tr>
<td>Wing et al. 1995</td>
<td>202</td>
<td>57.4 (5.3)</td>
<td>48.1</td>
<td>Community Pittsburgh PA</td>
<td>30.9 (2.1)</td>
<td>5.5 (0.5)</td>
<td>NR</td>
<td>27.1 (15.6)</td>
</tr>
<tr>
<td>Wing et al. 1998</td>
<td>154</td>
<td>45.7 (4.4)</td>
<td>79.0</td>
<td>Community Pittsburgh PA</td>
<td>3.5 (5.0)</td>
<td>5.9 (0.6)</td>
<td>7.2 (0.8)</td>
<td>15.9 (15.4)</td>
</tr>
<tr>
<td>Wycherley et al. 2012</td>
<td>123</td>
<td>50.8 (9.3)</td>
<td>0.0</td>
<td>Clinic Adelaide Australia</td>
<td>33.0 (5.9)</td>
<td>5.8 (0.7)</td>
<td>NR</td>
<td>10.0 (6.7)</td>
</tr>
</tbody>
</table>

Abbreviations: BG: blood glucose; BMI: body mass index; CAD: coronary Artery Disease; CVD: cardiovascular disease; DBP: diastolic blood pressure; DM: diabetes mellitus; FBG: fasting blood glucose; FPG: fasting plasma glucose; HbA1c: glycated hemoglobin A1c; HDL: high density cholesterol; HT: hypertension; IGT: impaired glucose tolerance; LDL: low density cholesterol MetS: metabolic syndrome; NR: not reported; OGTT: oral glucose tolerance test; PCP: primary care physician; PG: plasma glucose; SD: standard deviation
<table>
<thead>
<tr>
<th>author</th>
<th>title</th>
<th>date</th>
<th>page</th>
<th>public</th>
<th>doi</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FPG (mmol/L)</td>
<td>HbA1c (%)</td>
<td>% Change in Fasting Insulin</td>
<td>% Change in HOMA-IR</td>
<td>Weight Loss (%)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studies (sample size)</td>
<td>pooled effect mean (Effect size) (95%CI)</td>
<td>Heterogeneity p value</td>
<td>Studies (sample size)</td>
<td>pooled effect mean (Effect size) (95%CI)</td>
<td>Heterogeneity p value</td>
</tr>
<tr>
<td>PA+D vs UC</td>
<td>31 (6007)</td>
<td>−0.15 (0.06)</td>
<td><0.01</td>
<td>5 (1340)</td>
<td>−0.07 (0.09)</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(−0.27, 0.08)</td>
<td></td>
<td></td>
<td>(−0.23, 0.23)</td>
<td></td>
</tr>
<tr>
<td>All studies with attrition <30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All studies with attrition <30% plus studies with attrition ≥30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All studies with attrition <30% and participants with FPG<5.5 mmol/L or HbA1c <5.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All studies with attrition <30% and participants with FPG≥5.5 mmol/L or HbA1c≥5.5%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI: confidence interval; D: diet; FPG: fasting plasma glucose; HbA1c: glycated hemoglobin A1c; HOMA-IR: homeostasis model assessment of insulin resistance; LI: lifestyle intervention; mo: month; PA: physical activity; UC: usual care; vs: versus