Recommendations on the indications for RBC transfusion for the critically ill child receiving support from extracorporeal membrane oxygenation, ventricular assist, and renal replacement therapy devices from the pediatric critical care transfusion and Anemia expertise initiative

Melania M. Bembea, Johns Hopkins University
Ira M. Cheifetz, Duke University
James Fortenberry, Emory University
Timothy Bunchman, Virginia Commonwealth University
Stacey Valentine, University of Massachusetts
Scot Bateman, University of Massachusetts
Marie Steiner, University of Minnesota

Journal Title: Pediatric Critical Care Medicine
Volume: Volume 19, Number 9
Publisher: Lippincott, Williams & Wilkins | 2018-01-01, Pages S157-S162
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1097/PCC.0000000000001600
Permanent URL: https://pid.emory.edu/ark:/25593/v0jw3

Final published version: http://dx.doi.org/10.1097/PCC.0000000000001600

Copyright information:
Copyright © 2018 by the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies.

Accessed December 13, 2019 6:30 AM EST
Recommendations on the Indications for Red Blood Cell Transfusion for the Critically Ill Child Receiving Support from Extracorporeal Membrane Oxygenation, Ventricular Assist, and Renal Replacement Therapy Devices from the Pediatric Critical Care Transfusion and Anemia Expertise Initiative

Melania M. Bembea, MD, PhD, Ira M. Cheifetz, MD, James Fortenberry, MD, Timothy Bunchman, MD, Stacey Valentine, MD MPH, Scot Bateman, MD, Marie Steiner, MD, MS, and for the Pediatric Critical Care Transfusion and Anemia Expertise Initiative (TAXI) *, in collaboration with the Pediatric Critical Care Blood Research Network (BloodNet), and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network

1Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD
2Department of Pediatrics, Division of Critical Care, Duke University, Durham, NC
3Department of Pediatrics, Critical Care Division, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA
4Department of Pediatrics, Virginia Commonwealth University, Richmond, VA
5Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA
6Department of Pediatrics, University of Minnesota, Minneapolis, MN

Abstract

OBJECTIVE—To present recommendations and supporting literature for red blood cell (RBC) transfusions in critically ill children supported with extracorporeal membrane oxygenation (ECMO), ventricular assist devices (VAD) or renal replacement therapy (RRT).

DESIGN—Consensus conference series of international, multidisciplinary experts in RBC transfusion management of critically ill children

METHODS—The panel of 38 experts developed evidence-based and when evidence was lacking, expert-based clinical recommendations as well as research priorities for RBC transfusions in critically ill children. The ECMO/VAD/RRT subgroup included six experts. We conducted electronic searches of the PubMed, Embase, and Cochrane Library (CENTRAL) databases from 1980 to May 2017, using medical subject heading terms and text words to define concepts of RBC transfusion, ECMO, VAD, and RRT. We used a standardized data extraction form to construct

Corresponding Author: Melania M. Bembea, MD, PhD, Johns Hopkins Hospital, 1800 Orleans Street, Bloomberg Suite 6321, Baltimore, MD 21287, Phone: 410-955-6412, mbembea1@jhmi.edu.

TAXI members listed in Appendix 1

Copyright form disclosure: Dr. Bunchman has disclosed that he does not have any potential conflicts of interest.
evidence tables and graded the evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Recommendations developed and supporting literature were reviewed and scored by all panel members. Agreement was obtained using the Research And Development/University of California, Los Angeles (RAND/UCLA) appropriateness method.

RESULTS—For inpatients requiring ECMO, VAD, or RRT support, there was expert agreement (>80%) on five good practice statements aimed to improve accuracy and uniform reporting of RBC transfusion data in pediatric ECMO, VAD, and RRT studies and quality improvement projects; four clinical recommendations of physiologic metrics and biomarkers of oxygen delivery, in addition to hemoglobin concentration, to guide RBC transfusion, acknowledging insufficient evidence to recommend specific RBC transfusion strategies; and eight research recommendations.

CONCLUSIONS—Further research surrounding indications, risks, benefits, and alternatives to RBC transfusion in children on extracorporeal devices is clearly needed. Using a structured literature review and grading process, the TAXI panel concluded that there is currently insufficient evidence to recommend specific RBC transfusion parameters in children requiring ECMO, VAD, or RRT support.

Keywords
extracorporeal life support; ECLS; extracorporeal membrane oxygenation; ECMO; ventricular assist device; mechanical circulatory support; renal replacement therapy; dialysis; transfusion; blood; red blood cell; hemoglobin; intensive care; child; pediatric critical care; evidence-based; consensus conference

INTRODUCTION

The use of extracorporeal devices in children with cardiac, respiratory, and/or renal failure has increased significantly over the last two decades, partly driven by continued improvement in biocompatibility and safety features that allow for deployment of such devices in critically ill infants and children (1–3). With the increase in use of extracorporeal support, concern has also increased over the burden of red blood cell (RBC) transfusion in these patients as well as RBC transfusion-associated morbidity and cost.

Exposure to RBC administration in children with extracorporeal devices occurs in several ways. Neonates and small children are exposed to transfused RBCs through priming of the device at initiation of support as well as when devices need to be replaced due to thrombosis, malfunction, or other indications. Once on the device, RBCs may be transfused for active hemorrhage, which is estimated to occur in as many as one third of extracorporeal membrane oxygenation (ECMO) patients and one third of ventricular assist devices (VAD) patients (4, 5). Lastly, RBCs are often transfused in children on ECMO or VADs to maintain hemoglobin (Hb) concentrations at pre-set levels based on varied institutional practices with the presumed goal of optimizing oxygen delivery. There are no published evidence-based guidelines to direct clinicians on when to transfuse RBCs in patients supported on extracorporeal devices in the absence of active bleeding. Therefore, large variability in practice exists (6). We present recommendations for clinical practice as supported by the review of the pediatric literature on indications for RBC transfusion in critically ill children.
supported with ECMO, VADs, or renal replacement therapy (RRT). Recommendations for
future research are also provided.

METHODS

The details of the methodology are described elsewhere in this supplement of Pediatric
Critical Care Medicine (7). Briefly, we searched PubMed, EMBASE, and Cochrane Library
from 1980 to December 2015, with an update in May 2017, using a combination of medical
subject heading terms and text words to define concepts of RBC transfusion, ECMO, VAD,
and RRT. We searched references from identified articles for additional publications. Two
authors reviewed all citations independently. We used a standardized data extraction form to
construct evidence tables and graded the evidence using the Grading of Recommendations
Assessment, Development and Evaluation (GRADE) system. A panel of 38 experts from 29
academic institutions in 8 countries met over the course of two years to develop evidence-
based and, when evidence was lacking, expert-based recommendations for RBC transfusion
in critically ill children. Recommendations developed and supporting literature were
reviewed and scored by all panel members, using the Research And Development/University
of California Appropriateness Method (RAND/UCLA). All recommendations reached
agreement (>80%). Final recommendations for RBC transfusion in critically ill children
with ECMO, VAD, and RRT devices were divided into three categories: good practice
statements, clinical recommendations, and research recommendations.

RESULTS

Using the search strategy described above, we retrieved 2782 abstracts. 81 papers were
retained for the full-text evaluation, 21 papers included, among which 13 papers were
selected and used in the final process to generate the following good practice statements,
clinical and research recommendations, and are presented in the Supplemental Digital
Content 1.

Good Practice Statements

8.1—In critically ill children on ECMO, we recommend reporting Hb concentration, rather
than hematocrit, for RBC transfusion threshold algorithms. Consensus panel expertise, 97%
Agreement, n=35, median 8 (IQR 8-9)

Rationale—Historically, most ECMO publications used hematocrit thresholds for RBC
transfusions (8–15). However, in the current era, RBC transfusion research in critical care is
overwhelmingly conducted using Hb (not hematocrit) thresholds, including in pediatric
populations (16, 17). Using Hb to align RBC transfusion threshold reporting in ECMO
patients with RBC transfusion threshold reporting in critically ill non-ECMO populations
will allow on- and off-ECMO comparisons within these populations (e.g., acute respiratory
distress syndrome, cardiac arrest, cardiogenic shock, etc.). Indeed, some adult ECMO
centers have been reporting Hb thresholds for transfusion based on extrapolation of evidence
from non-ECMO critically-ill populations (18).
8.2—In critically ill children on ECMO, we recommend measuring Hb concentration before all RBC transfusion, unless the patient experiences life-threatening bleeding. *Consensus panel expertise, 97% Agreement, n=35, median 8 (IQR 8-9)*

8.3—In critically ill children on ECMO, we recommend that adoption of blood sparing and conservation procedures and guidelines should be implemented. *Consensus panel expertise, 94% Agreement, n=35, median 8 (IQR 8-9)*

8.4—In critically ill children on ECMO, we recommend taking measures to minimize the number of donor exposures. *Consensus panel expertise, 97% Agreement, n=35, median 8 (IQR 8-9)*

8.5—In critically ill children on ECMO, we recommend that all RBC exposure within circuit prime be reported in pediatric ECMO transfusion studies and quality improvement projects. *Consensus panel expertise, 94% Agreement, n=35, median 8 (IQR 8-9)*

Rationale—It is currently not possible to combine results from multiple studies of RBC transfusion during ECMO (i.e., conduct a meta-analysis) due to variability in reporting of RBC exposure including or excluding RBC priming of ECMO circuit(s) (8–14). Furthermore, not accounting for exposure to RBCs used for priming likely underestimates the number of donor exposures for pediatric ECMO patients.

Clinical Recommendations: ECMO

8.6—In critically ill children on ECMO, we recommend using physiologic metrics and biomarkers of oxygen delivery, in addition to Hb concentration, to guide RBC transfusion. Administration of a RBC transfusion should be based on evidence of inadequate cardiorespiratory support or decreased systemic and/or regional oxygen delivery. *Weak recommendation, low quality pediatric evidence (2C), 97% Agreement, n=35, median 8 (IQR 8-9)*

Rationale—ECMO patients receive large amounts of RBCs, ranging on average from 42 ml/kg/day to up to 105 ml/kg/day (8, 9, 11, 19). The number of donor exposures in ECMO patients, therefore, ranges from a median of 1.4 to 10.9 per ECMO course (8, 12–15, 20). Indications for RBC transfusion are primarily based on expert Extracorporeal Life Support Organization (ELSO) clinical guidelines, last updated in 2013, recommending to maintain hematocrit above 40% during ECMO, in an effort to “optimize oxygen delivery while allowing the lowest reasonable ECMO circuit flow” (21). However, ECMO medical directors in a recent survey reported lower hematocrit thresholds for RBC transfusion: medians of 35% (range, 25%–40%) for pediatric-only programs and 30% (range, 20%–40%) for adult-only and mixed adult and pediatric programs (6).

Adult ECMO centers are reporting adoption of restrictive transfusion strategies based on evidence in critically ill patients, with Hb thresholds as low as 7g/dl, without adverse effects noted (18, 22). As pediatric ECMO patients were excluded from pediatric trials of restrictive vs liberal RBC transfusion strategies (16), evidence is insufficient to support a specific hemoglobin or hematocrit threshold for RBC transfusions in this population. Furthermore,
pediatric ECMO patients may have varying requirements for RBC transfusion based on age, variable physiology of the underlying disease, or mode of ECMO support (venoarterial vs venovenous). Adhering to a normal/near-normal hemoglobin/hematocrit threshold without considering adequacy of systemic and/or regional oxygen delivery (e.g., systemic oxygen saturation, mixed venous saturation, lactate, cerebral oximetry, somatic oximetry, etc.) could expose pediatric ECMO patients to unnecessary RBC transfusions. While pediatric evidence is scant, Fiser et al showed in a single center pediatric ECMO study (n=45 patients with a median of 9 RBC transfusion events per patient, range, 1–57) that a majority (>70%) of transfusions were administered when systemic mixed venous oxygen saturation was adequate (8). In the same study, the authors showed that tissue oxygenation measures, including mixed venous saturation and cerebral oximetry, were not significantly altered following RBC transfusions. Only 31/617 (5%) of RBC transfusions administered resulted in an increase in mixed venous saturation of >5%, whereas an increase in cerebral regional oxygen saturation of more than 5% was only observed in 53/617 (9%) of transfusions (8). **GRADE 2C for this recommendation was based on the pediatric literature discussed above, with downgrading for risk of bias, indirectness and residual confounding.**

8.7—In critically ill children on ECMO, there is insufficient evidence to recommend a specific RBC transfusion decision-making strategy using physiologic-based metrics and biomarkers. **Consensus panel expertise, 97% Agreement, n=35, median 8 (IQR 8-9)**

Clinical Recommendations: VAD

8.8—In critically ill children on VAD support, we recommend using physiologic metrics and biomarkers of oxygen delivery, in addition to Hb concentration, to guide RBC transfusion. Administration of a RBC transfusion should be based on evidence of inadequate cardiorespiratory support or decreased systemic and/or regional oxygen delivery. **Consensus panel expertise, 94% Agreement, n=35, median 8 (IQR 8-9)**

Rationale—There are no published prospective studies on optimal Hb and/or physiologic transfusion thresholds in critically ill children with VADs. Children with VADs were excluded from the major pediatric critical care randomized controlled trial of a restrictive vs. liberal transfusion strategy (16). AHA guidelines for mechanical circulatory support in the ambulatory and community setting emphasize the potentially detrimental role of RBC transfusion in the “bridge-to-transplant” patient due to increase in anti-HLA antibodies that could complicate donor matching, recommending that transfusion should be “targeted to symptomatic patients only” (23).

Providers are cautioned to avoid anemia in mechanical circulatory support patients, due to its association with increased morbidity and mortality in this population (23, 24). In the critical care environment, similar to ECMO patients, children with VADs receive large volumes of RBCs. Stiller et al reported that in a single center where transfusion was guided by a Hb threshold of 9 g/dl children received 17.2 ml RBCs/kg/day during the first 8 days of VAD support (20). In a different cohort, Guynes et al reported that pediatric VAD patients in a single center received 676 ml RBCs/kg/patient during the entire VAD course; of note, transfusion triggers were not reported in this study (25). With regards to ABO and HLA
sensitization, in two single center studies of pediatric mechanical circulatory support, 29% of patients developed ABO sensitization, and 43% of patients developed HLA sensitization (25, 26). The volume of transfusions was not associated with development of sensitization, but small sample sizes and retrospective design were limitations noted for both studies (25, 26).

8.9—In critically ill children on RRT support, we recommend using the smallest circuit size that will provide adequate RRT, while minimizing a driver for RBC transfusion specific to RRT (i.e., loss of blood volume that arises with circuit dysfunction/replacement of the circuit). Consensus panel expertise, 100% Agreement, n=35, median 9 (IQR 8-9)

Rationale—There are no published prospective studies on the optimal Hb and/or physiologic transfusion threshold for pediatric patients supported with RRT. The one way to avoid excess blood exposure is to minimize the circuit volume that has significant impact in the smaller (i.e., <20 kg) children. Presently in the U.S., the smallest RRT circuit volume is ~ 83 ml, making it a possibility to use in 10 kg children without a blood prime unless hemodynamics dictate otherwise. Outside of the U.S., approved circuit volumes range from 60 ml and miniaturized circuits are currently under study in the U.K. and Italy, with volumes of 14 ml (NIDUS) and 27 ml (CARPEDIEM). Advances in miniature circuits as small as 3 ml are ongoing in Japan (27–29). In addition to these small circuits, the volume of the vascular access (usually 2 ml for each access port) need to be considered. This group of patients presents an additional challenge in having unpredictable renal synthesis of erythropoietin to stimulate hematopoiesis, potentially complicating transfusion needs.

Research Recommendations

R8.1—In critically ill children on ECMO who are stable and not experiencing hemorrhagic shock, we recommend that Hb concentrations and correlations with physiologic indications for RBC transfusion be studied to determine minimum thresholds for safety and efficacy of RBC transfusion. Consensus panel expertise, 97% Agreement, n=35, median 9 (IQR 8-9)

R8.2—In critically ill children on ECMO, we recommend undertaking future studies of oxygen delivery/consumption markers (e.g., mixed venous saturation, cerebral oximetry, somatic oximetry, etc.) in patients maintained at different Hb thresholds. Such studies will aim to determine the optimal physiologic thresholds for RBC transfusion during pediatric ECMO. Consensus panel expertise, 91% Agreement, n=35, median 9 (IQR 8-9)

R8.3—In critically ill children who suffer from cardiac arrest pre-ECMO (i.e., extracorporeal cardiopulmonary resuscitation [ECPR]) and critically ill children with acute neurologic injury during ECMO (e.g., embolic stroke, intracranial hemorrhage, etc.), we recommend undertaking future studies for RBC transfusion strategies that optimize neuroprotection and recovery. Consensus panel expertise, 91% Agreement, n=35, median 8 (IQR 8-9)

R8.4—In critically ill children on ECMO, we recommend undertaking future studies of the types of RBC manipulations and attributes and their impact on outcomes (e.g., storage
duration, irradiation, leukoreduction, filtration, matching for CMV/EBV serologic status, extended minor antigen matching, washing, etc.). Consensus panel expertise, 94% Agreement, n=35, median 8 (IQR 8-9)

R8.5—In critically ill children on VAD support, we recommend undertaking future studies of oxygen delivery/consumption markers (e.g., mixed venous saturation, cerebral oximetry, somatic oximetry, etc.) in association with RBC transfusions and Hb concentrations. Such studies will aim to determine the optimal physiologic thresholds for RBC transfusion during pediatric VAD support. Consensus panel expertise, 100% Agreement, n=35, median 8.5 (IQR 8-9)

R8.6—In critically ill children on VAD/ECMO support, we recommend undertaking future studies to determine the impact of RBC transfusions on allo-sensitization, success of organ acquisition and/or risk of rejection. Consensus panel expertise, 100% Agreement, n=35, median 8 (IQR 8-9)

R8.7—In critically ill children on VAD support, we recommend undertaking future studies of the types of RBC manipulations and attributes and their impact on outcomes (e.g., storage duration, irradiation, leukoreduction, filtration, matching for CMV/EBV serologic status, extended minor antigen matching, washing, etc.). Consensus panel expertise, 100% Agreement, n=35, median 8 (IQR 8-9)

R8.8—In critically ill children on RRT support, we recommend undertaking future studies to evaluate approaches to optimize RRT length of use and hence minimize blood loss due to RRT circuit change/replacement. Consensus panel expertise, 100% Agreement, n=35, median 8 (IQR 8-9)

CONCLUSIONS

Using a structured literature review and grading process, the TAXI panel concluded there is currently insufficient evidence to recommend specific RBC transfusion parameters in children requiring ECMO, VAD, or RRT support. Further research surrounding indications, risk, benefits, and alternatives to RBC transfusion in children on extracorporeal devices is needed to better establish Hb and RBC-related strategies that optimize outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank all members of the TAXI initiative for their support and their comments. The study was supported by grants from the Washington University Children’s Discovery Institute (CDI-EI-2015-499), University of Massachusetts, CHU Sainte-Justine Foundation, National Institute of Child Health Development (1 R13 HD088086-01), National Heart, Lung and Blood Institute, and the Society for the Advancement of Blood Management. We also thank the World Federation of Pediatric Intensive and Critical Care Societies, Society for Critical Care Medicine and the AABB for their support of TAXI.
Dr. Valentine and Bembea’s institutions received funding from Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and National Heart, Lung, and Blood Institute (NHLBI) under award number 1 R13 HD088086-01; the Society for the Advancement of Blood Management (SABM) SABM-Haemonetics Research Starter Grant; and Washington University Children’s Discovery Institute (DCI-E1-2015-499). Dr. Valentine she received other support from CHU-Sainte-Justine Foundation and the University of Massachusetts Medical School; and she received support for article research from the National Institutes of Health (NIH); SABM SABM-Haemonetics Research Starter Grant, CHU-Sainte-Justine Foundation, Washington University Children’s Discovery Institute and the University of Massachusetts Medical School. Dr. Bembea’s institution also received funding from NIH/NINDS K23NS076674, and she disclosed off-label product use of ECMO. Dr. Bembea, Bateman, and Steiner received support for article research from the NIH. Dr. Cheifetz received funding from Philips (medical advisor) and UptoDate (contributor). Dr. Fortenberry received funding from Davis and Snyder LLC and disclosed that he provided expert testimony for a law firm defending physicians. Dr. Bateman’s institution received funding from SABM. Dr. Bateman and Steiner’s institutions received funding from R13 conference grant from the NICHD and NHLBI.

References

Appendix 1

Pediatric Critical Care Transfusion and Anemia Expertise Initiative (TAXI)

Members

(* for Executive Committee) Co-chairs: Stacey L. Valentine MD MPH* and Scot T. Bateman MD*, University of Massachusetts, USA, Content Experts: Section 1, General pediatric critical care patient based on physiologic and hemoglobin thresholds: Andrew Argent MD MBBBCh, University of Cape Town, South Africa, Jeffrey L. Carson MD, Rutgers Robert Wood Johnson Medical School, USA, Jill M. Cholette MD*, University of Rochester, USA, Allan Doctor MD*, Washington University of St. Louis, USA, Jacques Lacroix MD*, Universite de Montreal, Canada, Kenneth Remy MD, Washington University of St. Louis, USA, Section 2, Respiratory failure: Pierre Demaret MD MSc, CHC Liege,