Reply to "Low prevalence of diabetes with chronic complications in patients with Takotsubo syndrome"

Rupak Desai, Atlanta Veterans Affairs Medical Center
Sandeep Singh, Institute of Human Behavior and Allied Sciences
Hemant Goyal, Mercer University
Abhijeet Dhoble, University of Texas McGovern Medical School
Abhishek Deshmukh, Mayo Clinic
Gautam Kumar, Emory University
Rajesh Sachdeva, Emory University

Journal Title: Clinical Cardiology
Volume: Volume 41, Number 8
Publisher: Wiley Open Access: Various Creative Commons Licenses |
2018-08-01, Pages 1036-1037
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1002/clc.23024
Permanent URL: https://pid.emory.edu/ark:/25593/v0gjh

Final published version: http://dx.doi.org/10.1002/clc.23024

Copyright information:
© 2018 Wiley Periodicals, Inc.

Accessed January 4, 2020 12:11 PM EST
LETTER TO THE EDITOR

Reply to “Low prevalence of diabetes with chronic complications in patients with Takotsubo syndrome”

To the Editor:

We thank Dr. Madias for his interest in our manuscript regarding the impact of obesity on the in-hospital outcomes in takotsubo cardiomyopathy (TCM) patients.1 In table 2 of our paper, we compared the frequency of comorbidities in non-obese vs. obese TCM patients. We found a higher frequency of diabetes mellitus (DM) including both uncomplicated (37.2% vs. 15.3%) and complicated (4.5% vs. 1.9%) cases in the obese TCM cohort. Although the propensity-matched analysis did show a lower frequency of uncomplicated (37.2% vs. 38.4%) and complicated (4.5% vs. 5.1%) DM in the obese TCM cohort, the differences were statistically non-significant to establish any protective role of DM in the setting of obesity.

We observed a cumulative DM frequency of 19.5% (17.4% uncomplicated & 2.1% complicated) in the TCM cohort, which is higher than the collective diagnosed and undiagnosed DM prevalence of 9.4% in the general US population reported by the CDC,2 12% to 14% by using the National Health and Nutrition Examination Survey (NHANES) data,3 and a global adult DM prevalence of 8.5% depicted by WHO.4 However, it is important to note that the data analyzed in the NIS is only for hospitalizations, meaning sicker patients get hospitalized. Thus evidently, TCM cohort carries overall a higher DM burden compared to the general US population. Although there was no significant difference (P > 0.05) in the DM with chronic complications between the obese vs. non-obese TCM groups we, nonetheless, agree with Dr. Madias’s observation that the complicated DM frequencies were lower in the obese (4.5%) and the non-obese (1.9%) TCM cohorts than one would expect. Correspondingly, our preliminary analysis of the 2010 to 2014 NIS did show overall higher frequencies of DM with chronic complications in obese (9.5%) and non-obese (3.2%) cohorts regardless of TCM.

The limitation of underreporting of chronic illnesses and resultant complications in the Nationwide (National) Inpatient Sample (NIS) has also been well acknowledged in past. The conceivable theories behind that are lack of depiction of outpatient DM-related visits, administrative data coding errors, inability to clearly quantify diet-controlled DM in the NIS, and likelihood of secondary outcomes being reported higher as the cause of discharges rather than the DM itself.5,6

The proposed protective effect of DM in development of TCM certainly sounds intriguing; however, it was not in the scope of our paper to address this question with conclusive and supportive results, especially when previous studies have shown adverse outcomes being imposed by DM on the TCM outcomes.7,8 However, with more studies like ours denoting lower complicated DM prevalence; one can definitely hypothesize to assess the counteractive role of autonomic neuropathy and other chronic macro/microvascular complications in diabetics in blunting the catecholamine-induced sympathetic surge and myocyte damages.9 With a paucity of prospective clinical data, inconclusive consensus and lack of propensity-matched retrospective data comparing the incidence and outcomes of TCM with and without DM and its sequel, the jury is still out whether TCM and DM have a mutually inclusive or exclusive effect on each other.10

ACKNOWLEDGMENTS

No grant, contract, or other source of financial support was used.

ORCID

Rupak Desai1 http://orcid.org/0000-0002-5315-6426
Hemant Goyal2 http://orcid.org/0000-0002-9433-9042

Rupak Desai1
Sandeep Singh2
Hemant Goyal3
Abhijeet Dhoble4
Abhishek Deshmukh5
Gautam Kumar6,7
Rajesh Sachdeva8

1Division of Cardiology, Atlanta VA Medical Center, Decatur, Georgia
2Institute of Human Behavior and Allied Sciences, New Delhi, India
3Division of Internal Medicine, Mercer University School of Medicine, Macon, Georgia
4Division of Cardiology, University of Texas McGovern Medical School, Houston, Texas
5Division of Cardiology, Mayo Clinic, Rochester, Minnesota
6Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
7Division of Cardiology, Morehouse School of Medicine, Atlanta, Georgia

Correspondence

Rupak Desai, MBBS, Division of Cardiology, Atlanta VA Medical Center, Decatur, GA.
Email: rdesa30@emory.edu; drrupakdesai@gmail.com
DOI 10.1002/clc.23024
REFERENCES