Guide to Enantioselective Dirhodium(II)-Catalyzed Cyclopropanation with Aryldiazoacetates

Kathryn M. Chepiga, Emory University
Changming Qin, Emory University
Joshua S. Alford, Emory University
Spandan Chennamadhavuni, Emory University
Timothy M. Gregg, Canisius College
Jeremy P. Olson, Emory University
Huw Davies, Emory University

Journal Title: Tetrahedron
Volume: Volume 69, Number 27-28
Publisher: Elsevier | 2013-07-08
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.tet.2013.04.075
Permanent URL: http://pid.emory.edu/ark:/25593/gk0xc

Final published version: http://dx.doi.org/10.1016/j.tet.2013.04.075

Copyright information:
©2013 Elsevier Ltd. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed March 6, 2020 9:33 AM EST
Guide to Enantioselective Dirhodium(II)-Catalyzed Cyclopropanation with Aryldiazoacetates

Kathryn M. Chepigaa, Changming Qina, Joshua S. Alforda, Spandan Chennamadhavunia, Timothy M. Greggb, Jeremy P. Olsona, and Huw M. L. Daviesa

Huw M. L. Davies: hmdavie@emory.edu

aDepartment of Chemistry, Emory University, (404)727-6839, 1515 Dickey Drive, Atlanta, Georgia 30322, USA

bDepartment of Chemistry and Biochemistry, Canisius College, Buffalo, NY 14208, USA

Abstract

Catalytic enantioselective methods for the generation of cyclopropanes has been of longstanding pharmaceutical interest. Chiral dirhodium(II) catalysts prove to be an effective means for the generation of diverse cyclopropane libraries. \textit{Rh}_{2}(R-DOSP)_{4} is generally the most effective catalyst for asymmetric intermolecular cyclopropanation of methyl aryldiazoacetates with styrene. \textit{Rh}_{2}(S-PTAD)_{4} provides high levels of enantioinduction with ortho-substituted aryldiazoacetates. The less-established \textit{Rh}_{2}(R-BNP)_{4} plays a complementary role to \textit{Rh}_{2}(R-DOSP)_{4} and \textit{Rh}_{2}(S-PTAD)_{4} in catalyzing highly enantioselective cyclopropanation of 3- methoxy-substituted aryldiazoacetates. Substitution on the styrene has only moderate influence on the asymmetric induction of the cyclopropanation.

Keywords

Asymmetric cyclopropanation; Cyclopropanes; Donor/acceptor carbenoids; Dirhodium catalysis; Phenyldiazoacetate

1. Introduction

The metal-catalyzed decomposition of diazo compounds in the presence of alkenes is a general method for the stereoselective synthesis of cyclopropanes.1,2 We have previously shown the rhodium-catalyzed cyclopropanation of donor/acceptor carbenoids to be effective for the enantioselective synthesis of cyclopropanes with one or more quaternary stereogenic centers.3-6 As many cyclopropyl amines are known to have significant CNS activity,7,8 we have initiated a program to use our cyclopropanation methodology to access novel diarylcyclopropylamines as potential therapeutic agents (Scheme 1). For the methodology to be broadly useful in drug discovery, access to a range of diarylcyclopropyl derivatives

2013 Elsevier Ltd. All rights reserved.

Correspondence to: Huw M. L. Davies, hmdavie@emory.edu.

Supplementary Material: Detailed experimental for the compounds, HPLC traces for all chiral compounds, \textit{H} NMR and \textit{C} NMR spectra for all new compounds are described in Supplementary data. Supplementary data associated with this article can be found in the online version.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
with high levels of enantioenrichment is required. Herein, we define the optimal catalysts for the cyclopropanation with various types of methyl aryldiazoacetates.

Three chiral dirhodium-(II) catalysts were selected for this study (Figure 1). The first catalyst, Rh$_2$(R-DOSP)$_4$, is considered to be the optimal catalyst for the reactions of donor/acceptor carbenoids when the acceptor group is a methyl ester.1,4 The substrate scope of Rh$_2$(R-DOSP)$_4$-catalyzed cyclopropanation is quite broad in terms of both the trapping agent and the donor group on the carbenoid.$^{3,4,9-18}$ However, a detailed study on the influence of the aryl substituent of the aryldiazoacetate on Rh$_2$(R-DOSP)$_4$-catalyzed cyclopropanation has not been conducted. The second catalyst, Rh$_2$(S-PTAD)$_4$, is the optimal chiral catalyst when the acceptor group in the donor/acceptor carbenoid is a phosphonate,19 trifluoromethyl,20 cyano,21 or keto group.22 Due to the perceived superiority of Rh$_2$(R-DOSP)$_4$ in the reactions of aryldiazoacetates, Rh$_2$(S-PTAD)$_4$ has not been thoroughly evaluated in the reactions of this class of carbenoid precursor. The third catalyst, Rh$_2$(R-BNP)$_4$, is an interesting catalyst of D$_4$-symmetry that has been applied to a number of carbonenoid reactions,$^{23-27}$ but has not been previously evaluated in the cyclopropanation of donor/acceptor carbenoids.

2. Results and Discussion

The study began by exploring the effect of aryl substitution on the enantioselectivity in the cyclopropanation of styrene by aryldiazoacetates. The results for a series of aryldiazoacetates (1a-l) using the three chiral dirhodium catalysts Rh$_2$(R-DOSP)$_4$, Rh$_2$(S-PTAD)$_4$ and Rh$_2$(R-BNP)$_4$ are summarized in Table 1. Excellent levels of diastereoselectivity were achieved in all cases (>95:5 dr) and the isolated yields of the cyclopropanes were generally high, ranging from 63-98%. The absolute configuration of the major isomer of the cyclopropanes is tentatively assigned as 1S,2R.28 Rh$_2$(R-DOSP)$_4$ provided high levels of enantioinduction when unsubstituted (1a) or 4-substituted (1b-e) methyl aryldiazoacetates were employed as substrates (Table 1, entries 1-5, 87-90% ee). In general, Rh$_2$(S-PTAD)$_4$ and Rh$_2$(R-BNP)$_4$ gave <60% ee in the cyclopropanation reactions of unsubstituted or 4-substituted aryldiazoacetates with these same substrates. The one exception, however, is the reaction of 4-methoxyphenyldiazoacetate 1e with Rh$_2$(S-PTAD)$_4$, which gave the cyclopropane 3e in exceptionally high enantioselectivity (entry 5, 96% ee).

Interestingly, Rh$_2$(R-DOSP)$_4$ fails to provide high levels of enantioinduction when the aryldiazoacetate contains a 3-methoxysubstituent (1i-l) (entries 9-12), especially when the ring is polysubstituted (1i, k-l). In these cases, the cyclopropanes 3i, k-l are produced in 28-56% ee (entries 9, 11-12). Rh$_2$(S-PTAD)$_4$ is an effective catalyst only in the case of 3,4-dimethoxyphenyldiazoacetate 1i, generating the cyclopropane 3i in 94% ee (entry 9). In contrast, Rh$_2$(R-BNP)$_4$ is an extremely effective catalyst with all of the 3-methoxy substituted aryldiazoacetates 1i-l, generating the cyclopropanes 3i-l in 88-97% ee (entries 9-12).

One of the most attractive features of Rh$_2$(R-DOSP)$_4$ and Rh$_2$(S-PTAD)$_4$ as chiral catalysts is that they are capable of operating at low catalyst loadings.29 As Rh$_2$(R-BNP)$_4$ was found to be the optimal catalyst for 3-methoxyaryldiazoacetate derivatives, we investigated
whether it could also operate at low catalyst loading. Reactions of aryldiazoacetate $1i$, with successively lower loadings of Rh$_2$(R-BNP)$_4$ are summarized in Table 2. Rh$_2$(R-BNP)$_4$ was effective at catalyzing highly enantioselective cyclopropanation with catalyst loadings of 1.0 and 0.5 mol%, providing $3i$ with virtually the same level of enantioselectivity (entry 1 vs. 2, 97% ee vs. 96% ee). When the catalyst loading was decreased further to 0.1 mol% a more significant drop in the level of enantioselectivity was observed (entry 3, 91% ee). Further decreasing the catalyst loading to 0.01 mol%, however, caused a dramatic decrease in enantioinduction (entry 4, 40% ee). These results suggest that, although Rh$_2$(R-BNP)$_4$ is capable of moderately high turnover numbers (TONs), it may not be as robust a catalyst as Rh$_2$(R-DOSP)$_4$ or Rh$_2$(S-PTAD)$_4$, which are capable of TONs as high as 850,000 and 1,800,000 respectively in asymmetric intermolecular cyclopropanation.\(^{29}\)

At the onset of this study, the asymmetric induction of the cyclopropanation was not expected to be heavily influenced by the functionality on the aryldiazoacetate. Having observed considerable variation in enantioselectivity depending on the nature of the aryl group, we decided to explore the effect of modifying the substitution on the styrene. These studies were focused on Rh$_2$(R-BNP)$_4$-catalyzed cyclopropanation with the 3, 4-dimethoxyphenyldiazoacetate $1i$ (Table 3), because Rh$_2$(R-BNP)$_4$ had not been previously evaluated as a catalyst for this transformation. The levels of enantioselectivity in the cyclopropanation under Rh$_2$(R-BNP)$_4$-catalyzed conditions were found to be moderately influenced by the functionality on the styrene, as the cyclopropanes $5a$-g were obtained with uniformly high levels of enantioinduction (80-90% ee). Previous studies have shown that Rh$_2$(R-DOSP)$_4$-catalyzed cyclopropanation is also not especially influenced by the nature of the styrene\(^{3,4,9}\) and the Rh$_2$(R-DOSP)$_4$-catalyzed cyclopropanation of a range of styrenes ($4a$-g) with $1i$ gave $5a$-g with modest levels of enantioselectivity (48-67% ee).

These studies reveal subtle differences in the ability of the chiral dirhodium tetracarboxylate catalysts to induce high enantioselectivity in the cyclopropanation of styrenes, as summarized in Table 4. The previous expectation that Rh$_2$(R-DOSP)$_4$ would give high asymmetric induction for all aryldiazoacetates was found not to be true, although it was found to be the most effective catalyst for the broadest range of substituted methyl aryldiazoacetates. In spite of the fact that Rh$_2$(S-PTAD)$_4$ is the most consistent catalyst when the acceptor group of the donor/acceptor carbenoid is modified,\(^{19-22}\) the level of enantioselectivity was found to be highly variable when aryl substitution of the aryldiazoacetate was modified. In particular, Rh$_2$(S-PTAD)$_4$ was very effective with 2-chlorophenyl aryldiazoacetate derivative. Rh$_2$(R-BNP)$_4$ becomes the best catalyst for 3-methoxyphenyl-substituted aryldiazoacetate derivatives. The cause for these subtle variations, at this stage, is not well understood. There is no clear steric or electronic trend to define which catalyst will perform best in a given system, which suggests the asymmetric induction may involve a combination of factors including π-stacking interactions. Computational studies are in progress to develop a rational model to explain these trends.

3. Conclusion

This study provides guidelines for choosing the optimal chiral dirhodium-(II) catalyst for cyclopropanation of aryldiazoacetates. The nature of the aryl group on the aryldiazoacetate strongly affects the asymmetric induction imparted by the three catalysts studied. Depending on the aryl substituent, Rh$_2$(R-DOSP)$_4$, Rh$_2$(S-PTAD)$_4$, or Rh$_2$(R-BNP)$_4$ can be utilized to obtain the desired cyclopropane with a high level of enantioinduction. In contrast, the functionality on the styrene has only moderate influence on the level of asymmetric induction in cyclopropanation reactions. These studies set the chemical foundation for our ongoing studies to develop the rapetually useful diarylcyclopropylamines, the results of which will be reported in due course.
4. Experimental Section

4.1 General

All reactions were conducted under anhydrous conditions in oven-dried glassware under an inert atmosphere of dry argon, unless otherwise stated. Hexanes, pentane, and toluene were dried by a solvent purification system (passed through activated alumina columns). All solvents were degassed by bubbling argon through the solvent for a minimum of 10 minutes prior to use. Unless otherwise noted, all other reagents were obtained from commercial sources and used as received. 1H Nuclear Magnetic Resonance (NMR) spectra were recorded at 400 MHz or 600 MHz. Data presented as follows: chemical shift (in ppm on the δ scale relative to δH 7.27 for the residual protons in CDCl$_3$), coupling constant (J/Hz), integration. Coupling constants were taken directly from the spectra and are uncorrected. 13C NMR spectra were recorded at 100 MHz and all chemical shift values are reported in ppm on the δ scale, with an internal reference of δC 77.23 for CDCl$_3$. Mass spectral determinations were carried out by using APCI as ionization source. Melting points are uncorrected. Infrared spectral data are reported in units of cm$^{-1}$. Analytical TLC was performed on silica gel plates using UV light. Flash column chromatography was performed on silica gel 60Å (230-400 mesh). Optical rotations were measured on Jasco polarimeters. Analytical enantioselective chromatographies were measured on Varian Prostar instrument and used isopropanol:hexane as gradient. Chiral HPLC conditions were determined by obtaining separation of the racemic product. Rh$_2$(R/S-DOSP)$_4$ was employed as the catalyst in the racemic reactions. Styrene (2) and substituted styrenes (4a-f) were commercially available and purified by pushing through a silica-filled pipette prior to use. Rh$_2$(R-DOSP)$_4$,3Rh$_2$(S-PTAD)$_4$,19Rh$_2$(R-BNP)$_4$,23 aryl diazoacetates 1a-1,2 and styrene 4g30 were all synthesized according published procedures.

4.2 General Procedure for the Synthesis of Methyl Phenyl diazoacetates31

The methyl arylacetate (1 equiv.) and p-ABSA (1.3 equiv.) were dissolved in acetonitrile and cooled to 0 °C using an ice bath under an argon atmosphere. 1, 8-Diazabicycloundec-7-ene (DBU, 1.3 equiv.) was then added to the stirring mixture over the course of 5 minutes. After the addition of the DBU, the reaction mixture continued to stir at 0 °C for an additional 15 minutes. Once this allotted time had passed, the ice bath was removed and the reaction mixture was stirred for 24 hours at room temperature. The resulting orange solution was quenched with saturated NH$_4$Cl and the aqueous layer was extracted with diethyl ether (3×). The organic layer was then washed with deionized H$_2$O to remove any residual salts. The combined organic layers were dried over MgSO$_4$ and filtered. The organic layer was then concentrated under reduced pressure. The residue was purified via flash chromatography on silica gel (10:1 Hexanes:EtOAc).

4.3 General Procedure for the Synthesis of Methyl Phenylcyclopropanecarboxylates with Rh$_2$(R-DOSP)$_4$

In a 25-mL round bottom flask (Flask A) equipped with a magnetic stir bar, styrene (5 equiv.) and p-ABSA (1.3 equiv.) were dissolved in acetonitrile and degassed using vacuum/argon cycles (×3). The reaction mixture was then dissolved in dry, degassed pentane (3 mL). The contents in Flask B were then added to Flask A using a syringe pump for the duration of 1 hour. After the addition, the reaction mixture continued to stir for 1 additional hour. Once the allotted time had passed, the reaction mixture was concentrated under reduced pressure and purified using silica gel column chromatography (increasing gradient starting at 10:1 Hexanes:EtOAc).
4.4 General Procedure for the Synthesis of Methyl Phenylcyclopropanecarboxylates with Rh$_2$(S-PTAD)$_4$

In a 25-mL round bottom flask (Flask A) equipped with a magnetic stir bar, styrene (5 equiv.) and Rh$_2$(S-PTAD)$_4$ (0.005 equiv.) were dissolved in dry, degassed pentane (3 mL). The reaction mixture was then degassed using vacuum/argon cycles (×3). In a separate 25-mL round bottom flask (Flask B), the methyl phenyldiazoacetate (0.5 mmol, 1 equiv.) was dissolved in dry, degassed pentane (5 mL) and degassed using vacuum/argon cycles (×3). The contents in Flask B were then added to Flask A using a syringe pump for the duration of 1 hour. After the addition, the reaction mixture continued to stir for 1 additional hour. Once the allotted time had passed, the reaction mixture was concentrated under reduced pressure and purified using silica gel column chromatography (increasing gradient starting at 10:1 Hexanes:EtOAc).

4.5 General Procedure for the Synthesis of Methyl Phenylcyclopropanecarboxylates with Rh$_2$(R-BNP)$_4$

In a 25-mL round bottom flask (Flask A) equipped with a magnetic stir bar, styrene (5 equiv.) and Rh$_2$(R-BNP)$_4$ (0.01 equiv.) were dissolved in dry, degassed toluene (3 mL). The reaction mixture was then degassed using vacuum/argon cycles (×3). In a separate 25-mL round bottom flask (Flask B), the methyl phenyldiazoacetate (0.5 mmol, 1 equiv.) was dissolved in dry, degassed pentane (5 mL) and degassed using vacuum/argon cycles (×3). The contents in Flask B were then added to Flask A using a syringe pump for the duration of 1 hour. After the addition, the reaction mixture continued to stir for 1 additional hour. Once the allotted time had passed, the reaction mixture was concentrated under reduced pressure and purified using silica gel column chromatography (increasing gradient starting at 10:1 Hexanes:EtOAc).

4.1.1. (1R,2S)-methyl 1,2-diphenylcyclopropanecarboxylate (3a)—Title compound was prepared by general procedure and obtained as a white solid. 85% yield for Rh$_2$(R-DOSP)$_4$; 87% yield for Rh$_2$(S-PTAD)$_4$; 72% yield for Rh$_2$(R-BNP)$_4$; HPLC: (Chiralcel SS-WHELK, 1% i-PrOH in hexane, 1.0 mL/min, 1 mg/mL, 30 min, λ = 254 nm) retention times of 8.62 min (major) and 10.22 min (minor), 88% ee for Rh$_2$(R-DOSP)$_4$; 21% ee for Rh$_2$(S-PTAD)$_4$; 42% ee for Rh$_2$(R-BNP)$_4$; R$_f$ = 0.25 (hexane: ethyl acetate 10:1); 1H NMR (600 MHz, CDCl$_3$) δ 7.12-7.11 (m, 3H), 7.05-7.01 (m, 5H), 6.77-6.75 (m, 2H), 3.70 (s, 3H), 3.11 (dd, J = 7.2, 9.3, 1H), 2.13 (dd, J = 4.8, 9.3, 1H), 1.88 (dd, J = 4.8, 7.2, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.5, 136.5, 134.9, 132.1, 128.2, 127.9, 127.2, 126.5, 52.8, 37.6, 33.3, 20.7; Data are consistent with the literature.5,6

4.1.2.(1S,2R)-methyl 2-phenyl-1-(p-tolyl)cyclopropanecarboxylate (3b)—Title compound was prepared by general procedure and obtained as a white solid. 84% yield for Rh$_2$(R-DOSP)$_4$; 77% yield for Rh$_2$(S-PTAD)$_4$; 69% yield for Rh$_2$(R-BNP)$_4$; HPLC: (Chiralcel SS-WHELK, 1% i-PrOH in hexane, 1.0 mL/min, 1 mg/mL, 30 min, λ = 254 nm) retention times of 10.57 min (major) and 14.13 min (minor), 87% ee for Rh$_2$(R-DOSP)$_4$; 46% ee for Rh$_2$(S-PTAD)$_4$; 51% ee for Rh$_2$(R-BNP)$_4$; R_f = 0.25 (hexane: ethyl acetate 10:1); 1H NMR (400 MHz; CDCl$_3$) δ 7.11-7.07 (m, 3H), 6.98-6.92 (m, 4H), 6.82-6.80 (m, 2H), 3.69 (s, 3H), 3.12 (dd, J = 4.8 and 9.3 Hz, 1H), 2.27 (s, 3H), 2.16 (dd, J = 9.6 and 4.8 Hz, 1H), 1.88 (dd, J = 7.2 and 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.8, 136.8, 136.7, 131.9, 131.8, 128.7, 128.3, 127.9, 127.2, 126.5, 52.9, 37.3, 33.4, 21.4, 20.9; IR (film): 3028, 2950, 1716, 1255; m/z (ESI) 267.1 (100%, M+H), 268.1 (20%); HRMS-ESI m/z 167.138 (C$_{18}$H$_{19}$O$_2$ requires 167.138).

4.1.3.(1S,2R)-methyl 2-phenyl-1-(4-(trifluoromethyl)phenyl)cyclopropanecarboxylate (3c)—Title compound was
prepared by general procedure and obtained as a transparent oil. 93% yield for Rh₂(R-DOSP); 67% yield for Rh₂(S-PTAD); 80% yield for Rh₂(R-BNP); HPLC: (Chiralcel OD-H, 0.5% i-PrOH in hexanes, 1.0 mL/min, 1 mg/mL, 30 min, \(\lambda = 254 \) nm) retention times of 8.27 min (minor) and 10.34 min (major), 87% ee for Rh₂(R-DOSP); 77% ee for Rh₂(S-PTAD); 57% ee for Rh₂(R-BNP); \(R_f = 0.44 \) (4:1 Hexanes:EtOAc); \(\begin{Bmatrix} \end{Bmatrix} \) 20\(D \) = -19.1 (c. 1. chloroform); \(\end{Bmatrix} \) H NMR (400 MHz; CDCl\(_3 \)) \(\delta \) 7.36 (d, \(J = 8 \) Hz, 2H), 7.12 (d, \(J = 8 \) Hz, 2H), 7.06 (m, 3H), 6.74 (m, 2H), 3.66 (s, 3H), 3.14 (dd, \(J = 9.6 \) and 7.6 Hz, 1H), 2.17 (dd, \(J = 9.2 \) and 5.2 Hz, 1H), 1.88 (dd, \(J = 7.2 \) and 5.2 Hz, 1H); \(\end{Bmatrix} \) C NMR (100 MHz, CDCl\(_3 \)) \(\begin{Bmatrix} \) \(\begin{Bmatrix} \) 73.9, 139.2, 135.8, 132.4, 128.1, 126.9, 125.0, 124.9, 124.8, 53.0, 37.2, 33.5, 20.4; IR (film): 3032, 2954, 1719, 1501, 1322, 1257; m/z (ESI) 321.1 (100%, M+H), 322.1 (21%); HRMS-ESI m/z 321.1097 (C\(_18 \)H\(_16 \)O\(_2\)F\(_3\) requires 321.1097).

4.1.4. (1S,2R)methyl 1-(4-chlorophenyl)-2-phenylcyclopropanecarboxylate (3d)

Title compound was prepared by general procedure and obtained as a transparent oil. 87% yield for Rh₂(R-DOSP); 71% yield for Rh₂(S-PTAD); 89% yield for Rh₂(R-BNP); HPLC: (Chiralcel OJ-H, 1% i-PrOH in hexanes, 1.0 mL/min, 1 mg/mL, 30 min, \(\lambda = 254 \) nm) retention times of 8.62 min (minor) and 12.58 min (major), 88% ee for Rh₂(R-DOSP); 48% ee for Rh₂(S-PTAD); 57% ee for Rh₂(R-BNP); \(R_f = 0.56 \) (4:1 Hexanes:EtOAc); \(\begin{Bmatrix} \) 20\(D \) = +5.1 (c = 1, chloroform); \(\end{Bmatrix} \) H NMR (400 MHz; CDCl\(_3 \)) \(\delta \) 7.12-7.06 (m, 5H), 6.95 (d, \(J = 8.8 \) Hz, 2H), 6.79-6.76 (m, 2H), 3.67 (s, 3H), 3.12 (dd, \(J = 9.3 \) and 7.5 Hz, 1H), 2.15 (dd, \(J = 9.3 \) and 4.8 Hz, 1H), 1.85 (dd, \(J = 7.2 \) and 4.8 Hz, 1H); \(\end{Bmatrix} \) C NMR (100 MHz, CDCl\(_3 \)) \(\begin{Bmatrix} \) \(\begin{Bmatrix} \) 174.1, 136.1, 133.7, 133.4, 132.8, 128.2, 128.1, 126.8, 52.9, 36.9, 33.4, 20.6; IR (film): 3031, 2951, 1717, 1493, 1255; m/z (ESI) 287.1 (100%, M+H), 288.1 (16.42%), 289.1 (29.3%); HRMS-ESI m/z 287.0833 (C\(_17 \)H\(_16 \)O\(_2\) requires 287.0833).

4.1.5. (1S,2R)methyl 1-(4-methoxyphenyl)-2-phenylcyclopropanecarboxylate (3e)

Title compound was prepared by general procedure and obtained as a white solid. 66% yield for Rh₂(R-DOSP); 93% yield for Rh₂(S-PTAD); 84% yield for Rh₂(R-BNP); HPLC: (Chiralcel OD-H, 0.7% i-PrOH in hexanes, 1.0 mL/min, 1 mg/mL, 30 min, \(\lambda = 254 \) nm) retention times of 11.97 min (major) and 17.71 min (minor), 90% ee for Rh₂(R-DOSP); 96% ee for Rh₂(S-PTAD); 57% ee for Rh₂(R-BNP); \(R_f = 0.39 \) (4:1 Hexanes:EtOAc); \(\begin{Bmatrix} \) 20\(D \) = +5.1 (c = 1, chloroform); \(\end{Bmatrix} \) H NMR (400 MHz; CDCl\(_3 \)) \(\delta \) 7.10-7.07 (m, 3H), 6.95 (d, \(J = 8.8 \) Hz, 2H), 6.80-6.77 (m, 2H), 6.68 (d, \(J = 8.8 \) Hz, 2H), 3.74 (s, 3H), 3.68 (s, 3H), 3.09 (dd, \(J = 9.2 \) and 7.6 Hz, 1H), 2.14 (dd, \(J = 9.2 \) and 4.8 Hz, 1H), 1.84 (dd, \(J = 7.2 \) and 4.8 Hz, 1H); \(\end{Bmatrix} \) C NMR (100 MHz, CDCl\(_3 \)) \(\begin{Bmatrix} \) \(\begin{Bmatrix} \) 174.9, 158.6, 136.7, 133.1, 128.3, 127.9, 127.0, 126.5, 113.4, 55.3, 52.8, 36.9, 33.4, 21.0; IR (film): 3031, 2951, 2836, 1715, 1515, 1245; m/z (ESI) 283.1 (100%, M+H), 284.1 (18.7%); HRMS-ESI m/z 283.1328 (C\(_18 \)H\(_16 \)O\(_2\)F\(_3\) requires 283.1329).

4.1.6. (1S,2R)methyl 1-(2-chlorophenyl)-2-phenylcyclopropanecarboxylate (3f)

Title compound was prepared by general procedure and obtained as a transparent oil. 89% yield for Rh₂(R-DOSP); 80% yield for Rh₂(S-PTAD); 78% yield for Rh₂(R-BNP); HPLC: (Chiralcel OJ-H, 0.5% i-PrOH in hexanes, 1.0 mL/min, 1 mg/mL, 30 min, \(\lambda = 254 \) nm) retention times of 11.47 min (major) and 15.27 min (major), 92% ee for Rh₂(R-DOSP); 97% ee for Rh₂(S-PTAD); 51% ee for Rh₂(R-BNP); \(R_f = 0.43 \) (4:1 Hexanes:EtOAc); \(\begin{Bmatrix} \) 20\(D \) = +18.8 (c = 1, chloroform); \(\end{Bmatrix} \) H NMR (300 MHz; CDCl\(_3 \)) \(\delta \) 7.18-7.02 (m, 7H), 6.84-6.76 (m, 2H), 3.68 (s, 3H), 3.13 (t, \(J = 8.7 \) Hz, 1H), 2.10 (m, 1H), 1.91 (dd, \(J = 7.2 \) and 5.1 Hz, 1H); \(\end{Bmatrix} \) C NMR (100 MHz, CDCl\(_3 \)) \(\begin{Bmatrix} \) \(\begin{Bmatrix} \) 173.6, 137.5, 133.5, 129.6, 128.9, 128.2, 127.6, 126.6, 126.4, 52.9, 33.5, 29.9, 21.7; IR (film): 3031, 2950, 1718, 1251, 694; m/z (ESI) 287.1 (100%, M+H), 288.1 (17%), 289.1 (32%); HRMS-ESI m/z 287.0833 (C\(_17 \)H\(_16 \)O\(_2\) requires 287.0833).

Tetrahedron. Author manuscript; available in PMC 2014 July 08.
4.1.7. (1S,2R)-methyl 1-(2-methoxyphenyl)-2-phenylcyclopropanecarboxylate (3g)—Title compound was prepared by general procedure and obtained as a white solid. 92% yield for Rh₂(R-DOSP)₄; 87% yield for Rh₂(S-PTAD)₄; 69% yield for Rh₂(R-BNP)₄; HPLC: (SS-WHELK column, 1% i-PrOH in hexanes, 1.0 mL/min, 1mg/mL, 30 min, δ 254 nm) retention times of 11.65 min (minor) and 14.00 min (major), 86% ee for Rh₂(R-DOSP)₄; 80% ee for Rh₂(S-PTAD)₄; 27% ee for Rh₂(R-BNP)₄; m/z (ESI) 313.14398 found 313.14332.

4.1.8. (1S,2R)-methyl 1-(3,4-dichlorophenyl)-2-phenylcyclopropanecarboxylate (3h)—Title compound was prepared by general procedure and obtained as a clear oil; 88% yield for Rh₂(R-DOSP)₄; 82% yield for Rh₂(S-PTAD)₄; 63% ee for Rh₂(S-PTAD)₄; δ 20D = 9.2 and 4.8 Hz, 1H), 1.85 (dd, J = 9.2 and 4.8 Hz, 1H); δ 20D = 0.23 (Hexane:EtOAc = 7:1); α = 19° (c. 1, chloroform); 1H NMR (400 MHz, CDCl₃): δ 7.18-7.16 (m, 2H), 7.14-7.10 (m, 3H), 6.82-6.79 (m, 3H), 3.68 (s, 3H), 3.14 (dd, J = 9.0 Hz, 1H), 3.08 (dd, J = 9.2, 7.6 Hz, 1H), 2.15 (dd, J = 9.2, 4.8 Hz, 1H), 1.84 (dd, J = 7.6 Hz, 1H); 13C NMR (100 MHz, CDCl₃): δ 173.3, 135.3, 135.2, 133.7, 131.6, 131.4, 131.2, 129.6, 128.0, 127.9, 126.8, 52.8, 36.3, 33.3, 20.2; IR (film): 2924, 1716, 1496, 1242; m/z (ESI) 283.1 (100%, M+H), 284.1 (19%); HRMS-ESI m/z 283.1329 (C₁₈H₁₉O₃ requires 283.1329).

4.1.9. (1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-phenylcyclopropanecarboxylate (3i)—Title compound was prepared by general procedure and obtained as a yellow oil. 78% yield for Rh₂(R-DOSP)₄; 72% yield for Rh₂(S-PTAD)₄; 82% yield for Rh₂(R-BNP)₄; HPLC: (Chiralcel OD-H, 0.7% i-PrOH in hexanes, 1 mL/min, 1 mg/mL, 30 min, δ 254 nm) retention times of 9.50 min (major) and 11.38 min (minor), 79% ee for Rh₂(R-DOSP)₄; 16% ee for Rh₂(S-PTAD)₄; δ 20D = 21.1° (c =1.25, CHCl₃); 1H NMR (400 MHz, CDCl₃): δ 7.09-7.07 (m, 3H), 6.81-6.79 (m, 2H), 6.69-6.63 (m, 2H), 6.53-6.52, (m, 1H), 3.67(s, 3H), 3.59 (s, 3H), 3.12

Tetrahedron. Author manuscript; available in PMC 2014 July 08.
(dd, J = 9.6, 7.2 Hz, 1H), 2.12 (dd, J = 9.2, 4.8 Hz, 1H); 1.87 (dd, J = 7.6, 5.2 Hz, 1H); 13C
NMR (100MHz, CDCl3) δ 174.2, 158.8, 136.4, 136.2, 128.5, 127.9, 127.7, 126.3, 124.4,
117.5, 112.9, 55.0, 52.6, 37.3, 33.1, 20.6; IR (film): 2925, 1717, 1602, 1454, 1239, 697;
HRMS (ESI) calcd for C18H19O3 (M+H) + 283.13344 found 283.13288.

4.1.11. (1S,2R)-methyl 1-(3, 5-dimethoxyphenyl)-2-phenylcyclopropanecarboxylate (3k)—Title compound was prepared by general
procedure and obtained as a yellow oil. 85% yield for Rh2(R-DOSP)4; 85% yield for Rh2(S-
PTAD)4; 69% yield for Rh2(R-BNP)4; HPLC: (Chiralcel OD-H, 6% i-PrOH inhexane, 1
mL/min, 1 mg/mL, 30 min, λ = 254 nm) retention times of 7.33 min (major) and 9.07 min
(minor), 28% ee for Rh2(R-DOSP)4; 3% ee for Rh2(S-PTAD)4; 92% ee for Rh2(R-BNP)4;
Rf = 0.31 (hexane: ethyl acetate 5:1); [20D +33.7° (c =1.1, CHCl3); 1H NMR (400 MHz,
CDCl3) δ 7.10-7.08 (m, 3H), 6.82 (dd, J = 7.2, 2.4 Hz, 2H), 6.24 (t, J = 2.4 Hz, 1H), 6.15 (d,
J = 2.4 Hz, 2H), 3.68 (s, 3H), 3.56 (s, 6H), 3.08 (dd, J = 9.2, 7.2 Hz, 1H), 2.10 (dd, J = 9.2,
4.8 Hz, 1H), 1.84 (dd, J = 7.2, 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 174.2, 158.8, 136.4,
136.2, 128.5, 127.9, 127.7, 126.3, 124.4, 117.5, 112.9, 55.0, 52.6, 37.3, 33.1, 20.6; IR (film): 2951,
2840, 1715, 1594, 1456, 1425, 1260, 1203, 1151, 1046, 715, 692; HRMS (APCI) calcd for
C19H21O4 (M+H) + 313.14344 found 313.14348.

4.1.12. (1S,2R)-methyl 2-phenyl-1-(3, 4, 5-
trimethoxyphenyl)cyclopropanecarboxylate (3l)—Title compound was prepared by general
procedure and obtained as a yellow oil. 98% yield for Rh2(R-DOSP)4; 95% yield for
Rh2(S-PTAD)4; 63% yield for Rh2(R-BNP)4; HPLC: (Chiralcel OD-H, 6% i-PrOH
inhexane, 1 mL/min, 1 mg/mL, 30 min, λ = 254 nm), retention times of 10.78 min (minor)
and 11.79 min (minor), 34% ee for Rh2(R-DOSP)4; 9% ee for Rh2(S-PTAD)4; 90% ee for
Rh2(R-BNP)4; Rf = 0.20 (hexane: ethyl acetate 5:1); [20D +17.5° (c =2.02, CHCl3); 1H NMR (400 MHz,
CDCl3) δ 7.09-7.07 (m, 3H), 6.81-6.78 (m, 2H), 6.16 (s, 2H), 3.76 (s, 3H), 3.69 (s, 3H), 3.59(s, 6H), 3.07 (dd, J = 9.2, 7.2 Hz, 1H); 2.14 (dd, J = 9.6, 4.8 Hz, 1H), 1.82
(dd, J = 7.6, 5.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 174.2, 152.3, 136.5, 130.3, 128.0,
127.7, 126.4, 109.4, 55.9, 52.6, 37.4, 33.1 20.8; IR (film): 2925, 1716, 1587, 1413,
1258, 1235, 1153, 1124; HRMS (ESI) calcd for C20H19O4 (M+H) + 345.14852 found
345.14853.

4.1.13. (1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-(m-
toly)cyclopropanecarboxylate (5a)—Prepared by general procedure with methyl 2-
diazo-2-(3,4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol, 1 equiv), 2-methylstyrene (148
mg, 1.25 mmol, 2.5 equiv), and Rh2(R-BNP)4 (4 mg, 0.0025 mmol, 0.005 equiv). The
remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (5:1) to
afford a yellow/green oil (114 mg, 76 % yield). Rf = 0.12 (hexane: ethyl acetate 5:1); [20D
+28.7° (c = 1.23, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.11 (d, J = 7.6 Hz, 1H), 7.00 (t, J
= 7.6 Hz, 1H), 6.83 (t, J = 7.6 Hz, 1H), 6.63 (m, 2H), 6.42 (d, J = 7.6 Hz, 1H), 6.34 (s, 1H),
3.77 (s, 3H), 3.71 (s, 3H), 3.57 (s, 3H), 3.11 (dd, J = 9.2, 7.6 Hz, 1H), 2.51 (s, 3H), 2.06 (dd,
J = 9.2, 5.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 147.9, 137.8, 134.7, 129.7, 127.8, 126.7,
125.8, 123.7, 114.7, 110.3, 55.7, 55.6, 52.8, 36.0, 31.2, 20.2, 19.5; IR (film): 2925, 1713, 1516,
1463, 1435, 1251, 1140, 1026, 740; HRMS (APCI) calcd for C20H21O3 (M+H) + 327.15990 found
327.15908; HPLC: (Chiralcel OD-H, 3% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, λ = 254 nm) retention times of
17.81 min (minor) and 19.31 min (major), 90% ee for Rh2(R-BNP)4, 64% ee for Rh2(R-
DOSP)4.

4.1.14. (1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-(p-
tolyl)cyclopropanecarboxylate (5b)—Prepared by general procedure with methyl 2-
diazomethane (2 mmoles, 2.0 equiv), methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol), 4-nitrostyrene (186 mg, 1.25 mmol, 2.5 equiv), and Rh$_2$(R-BNP)$_4$ (4 mg, 0.0025 mmol, 0.005 equiv). The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (5:1) to afford a yellow/green oil (147 mg, 90% yield). $R_f = 0.12$ (hexane: ethyl acetate 5:1); [α]$^2^0_D^{20} +27.7^\circ$ (c = 1.24, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 8.88 (d, $J = 8.0$ Hz, 2H), 6.69-6.67 (m, 4H), 6.37 (s, 1H), 3.81 (s, 3H), 3.67 (s, 3H), 3.57 (s, 3H), 3.05 (dd, $J = 9.2, 7.6$ Hz, 1H), 2.22 (s, 3H), 2.11 (dd, $J = 9.2, 4.8$ Hz, 1H), 1.80 (dd, $J = 7.6, 4.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.7, 147.9, 136.0, 133.5, 128.6, 128.0, 127.6, 124.1, 115.9, 113.7, 110.7, 56.1, 55.6, 53.1, 37.1, 33.2, 21.3; IR (film): 2951, 1714, 1589, 1516, 1435, 1413, 1341, 1315, 1258, 1155, 1027; HRMS (APCI) calcd for C$_{19}$H$_{20}$NO$_3$ (M+H) $^+ 327.15909$ found 327.15909; HPLC: (Chiralcel OD-H, 3% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, Δ=254 nm) retention times of 17.3 min (minor) and 20.1 min (major), 88% ee for Rh$_2$(R-BNP)$_4$, 67% ee for Rh$_2$(R-DOSP)$_4$.

4.1.15.(1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-(4-methoxyphenyl)cyclopropanecarboxylate (5c)—Prepared by general procedure with methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol, 1 equiv), 4-methoxy styrene (148 mg, 1.25 mmol, 2.5 equiv), and Rh$_2$(R-BNP)$_4$ (4 mg, 0.0025 mmol, 0.005 equiv). The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (5:1) to afford an off-white solid (137 mg, 80% yield). $R_f = 0.005$ equiv. The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (3:1); mp 123-125°C; [α]$^2^0_D^{20}$ $+31.0^\circ$ (c = 1.24, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.94 (d, $J = 8.8$ Hz, 2H), 6.92 (d, $J = 8.8$ Hz, 2H), 6.67 (d, $J = 8.2$ Hz, 1H), 6.61 (dd, $J = 8.2, 2.0$ Hz, 1H), 6.43 (d, $J = 2.0$ Hz, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 3.62 (s, 3H), 3.16 (dd, $J = 9.2, 7.6$ Hz, 1H), 2.22 (dd, $J = 9.2, 4.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 173.9, 148.5, 145.1, 128.7, 126.2, 124.2, 123.0, 115.0, 110.6, 55.9, 55.8, 53.0, 38.4, 32.6, 29.8, 21.8; IR (film): 2924, 1717, 1597, 1515, 1463, 1415, 1342, 1229, 1206, 1156, 1141; HRMS (APCI) calcd for C$_{19}$H$_{20}$NO$_3$ (M+H) $^+ 358.12851$ found 358.12836; HPLC: (Chiralcel OD-H, 5% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, Δ=254 nm) retention times of 19.2 min (minor) and 22.9 min (major), 90% ee for Rh$_2$(R-BNP)$_4$, 62% ee for Rh$_2$(R-DOSP)$_4$.

4.1.16.(1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-(4-nitrophenyl)cyclopropanecarboxylate (5d)—Prepared by general procedure with methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol, 1 equiv), 4-nitro styrene (168 mg, 1.25 mmol, 2.5 equiv), and Rh$_2$(R-BNP)$_4$ (4 mg, 0.0025 mmol, 0.005 equiv). The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (5:1) to afford an off-white solid (147 mg, 90% yield); $R_f = 0.19$ (hexane: ethyl acetate 3:1); mp 123-125°C; [α]$^2^0_D^{20}$ $+33.1^\circ$ (c = 1.4, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.50-7.46 (m, 4H), 6.88 (d, $J = 8.0$ Hz, 2H), 6.43 (d, $J = 2.0$ Hz, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 3.62 (s, 3H), 3.16 (dd, $J = 9.2, 7.6$ Hz, 1H), 2.22 (dd, $J = 9.2, 4.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.7, 147.9, 136.0, 133.5, 128.6, 128.0, 127.6, 124.1, 115.9, 113.7, 110.7, 56.1, 55.6, 53.1, 37.1, 33.2, 21.3; IR (film): 2952, 1714, 1611, 1589, 1516, 1435, 1413, 1341, 1315, 1258, 1155, 1027; HRMS (APCI) calcd for C$_{19}$H$_{20}$NO$_3$ (M+H) $^+ 342.14618$ found 342.14589; HPLC: (Chiralcel OD-H, 5% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, Δ=254 nm) retention times of 19.2 min (minor) and 22.9 min (major), 90% ee for Rh$_2$(R-BNP)$_4$, 62% ee for Rh$_2$(R-DOSP)$_4$.

4.1.17.(1S,2R)-methyl 1-(3,4-dimethoxyphenyl)-2-(4-trifluoromethyl)phenyl)cyclopropanecarboxylate (5e)—Prepared by general procedure with methyl 2-diazo-2-(3,4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol, 1 equiv), styrene (215 mg, 1.25 mmol, 2.5 equiv), and Rh$_2$(R-BNP)$_4$ (4 mg, 0.0025 mmol, 0.005 equiv). The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (6:1) to afford a yellow oil (171 mg, 90% yield); $R_f = 0.24$ (hexane: ethyl acetate/Tetrahedron. Author manuscript; available in PMC 2014 July 08.
4.1.18. (1S,2R)-methyl 2-(4-chlorophenyl)-1-(3,4-dimethoxyphenyl)cyclopropanecarboxylate (5f)—Prepared by general procedure with methyl 2-diazo-2-(3, 4-dimethoxyphenyl)acetate (118 mg, 0.5 mmol, 1 equiv), 4-chlorostyrene (173 mg, 1.25 mmol, 2.5 equiv), and Rh$_2$(R-BNP)$_4$ (4 mg, 0.0025 mmol, 0.005 equiv). The remaining residue was purified on silica gel eluting with hexanes: ethyl acetate (6:1) to afford clear oil (123 mg, 89% yield). R_f = 0.30 (hexane: ethyl acetate 3:1); $[\alpha]_{20}^D$ +13.4° (c = 1.2, CHCl$_3$); 1H NMR (400 MHz, CDCl$_3$) δ 7.04 (d, J = 8.4 Hz, 2H), 6.72-6.63 (m, 4H), 6.38 (d, J = 1.6 Hz, 1H), 3.81 (s, 3H), 3.67 (s, 3H), 3.61 (s, 3H), 3.04 (dd, J = 9.2, 7.2 Hz, 1H), 2.13 (dd, J = 9.2, 4.8 Hz, 1H), 1.78 (dd, J = 7.2, 4.8 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.4, 148.2, 148.2, 135.4, 132.3, 129.4, 128.0, 127.0, 124.2, 115.4, 110.5, 55.9, 55.8, 52.8, 37.2, 32.6, 21.2; IR (film): 2951, 1715, 1589, 1517, 1496, 1435, 1413, 1371, 1341, 1228, 1177, 1155, 1139; HRMS (APCI) calcd for C$_{19}$H$_{19}$ClO$_4$ (M+H)+ 346.09664 found 346.09632; HPLC: (Chiralcel OD-H, 5% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, $\Delta \cong$ 254 nm) retention times of 14.9 min (minor) and 18.5 min (major), 89% ee for Rh$_2$(R-BNP)$_4$, 67% ee for Rh$_2$(R-DOSP)$_4$.

4.1.19. (1S,2R)-methyl 2-(3,4-dichlorophenyl)-1-(3,4-dimethoxyphenyl)cyclopropanecarboxylate (5g)—Methyl 2-diazo-2-(3, 4-dimethoxyphenyl)acetate (2.7g, 11.6 mmol, 1 equiv) in 153 mL dry and degassed toluene was added by syringe pump over 2 h to a solution of 1,2-dichloro-4-vinylbenzene (2.4 g, 13.9 mmol, 1.2 equiv) and Rh$_2$(R-BNP)$_4$ (92.2 mg, 0.06 mmol, 0.005 equiv) in 77 mL toluene. After addition, the solution was allowed to stir overnight and toluene was removed in vacuo. The remaining residue was purified on silica gel (hexane:ethyl acetate 5:1) to afford a clear oil (3.2 g, 72% yield for Rh$_2$(R-BNP)$_4$ [enantiomer shown above]; 2.3g, 52% yield for Rh$_2$(S-BNP)$_4$) R_f = 0.17 (hexane: ethyl acetate 1:1); $[\alpha]_{20}^D$ +13.4° (c = 1.2, CHCl$_3$); 1H NMR (600 MHz, CDCl$_3$) δ 7.10 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.69 (d, J = 9.0 Hz, 1H), 6.63 (dd, J = 9.0, 2.4 Hz, 1H), 6.51 (dd, J = 9.0, 2.4 Hz, 1H), 6.44 (d, J = 1.8 Hz, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 3.66 (s, 3H), 3.02 (dd, J = 9.0, 7.2 Hz, 1H), 2.13 (dd, J = 9.0, 5.1 Hz, 1H), 1.78 (dd, J = 7.2, 5.1 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 174.1, 148.2, 148.3, 137.4, 131.9, 130.5, 130.4, 129.7, 127.0, 126.6, 124.2, 115.2, 110.6, 55.9, 55.8, 52.9, 37.4, 32.1, 21.2; IR (film): 2951, 2836, 1716, 1559, 1516, 1413, 1229, 1178, 1137, 1027, 764; HRMS awaiting results; HPLC: (Chiralcel OD-H, 5% i-PrOH in hexane, 1 mL/min, 1 mg/mL, 30 min, $\Delta \cong$ 254 nm) retention times of 15.4 min (minor) and 17.9 min (major), 86% ee for Rh$_2$(R-BNP)$_4$; retention times of 15.3 min (major) and 19.7 min (minor) 85% ee for Rh$_2$(S-BNP)$_4$, 48% ee for Rh$_2$(R-DOSP)$_4$.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

This work was supported by the National Institutes of Health (DA023224).

References

28. The absolute configuration of the cyclopropanes is tentatively assigned assuming a similar asymmetric induction as was observed with styrldiazoacetates (see Davies HMLHNJS, Cantrell WR Jr, Olive JL. J Am Chem Soc. 1993; 115:9468.)
Figure 1. Dirhodium-(II) catalysts used in this study
Scheme 1. Route to cyclopropyl amines from aryl diazoacetates.
Table 1
Examination of the influence of substitution on aryldiazoacetate

<table>
<thead>
<tr>
<th>entry</th>
<th>Ar</th>
<th>product</th>
<th>Rh₂ (S-DOSP)₄</th>
<th>Rh₂ (S-PTAD)₄</th>
<th>Rh₂(R-BNP)₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3a</td>
<td>85</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>yield (%)</td>
<td>ee (%)</td>
<td>yield (%)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3b</td>
<td>84</td>
<td>87</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>F₃C</td>
<td>3c</td>
<td>93</td>
<td>87</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>Cl</td>
<td>3d</td>
<td>87</td>
<td>88</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>MeO</td>
<td>3e</td>
<td>66</td>
<td>90</td>
<td>93</td>
</tr>
<tr>
<td>6</td>
<td>ClCl</td>
<td>3f</td>
<td>89</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>entry</td>
<td>Ar</td>
<td>product</td>
<td>yield (%)</td>
<td>ee (%)</td>
<td>yield (%)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>7</td>
<td>![Image](59x447 to 97x663)</td>
<td>3g</td>
<td>92</td>
<td>86</td>
<td>87c</td>
</tr>
<tr>
<td>8</td>
<td>![Image](157x409 to 206x481)</td>
<td>3h</td>
<td>88b</td>
<td>82b</td>
<td>88b</td>
</tr>
<tr>
<td>9</td>
<td>![Image](220x409 to 264x481)</td>
<td>3i</td>
<td>74</td>
<td>56</td>
<td>70c</td>
</tr>
<tr>
<td>10</td>
<td>![Image](278x409 to 318x481)</td>
<td>3j</td>
<td>78b</td>
<td>79b</td>
<td>72b</td>
</tr>
<tr>
<td>11</td>
<td>![Image](332x409 to 366x481)</td>
<td>3k</td>
<td>85b,c</td>
<td>28b,c</td>
<td>85b,c</td>
</tr>
<tr>
<td>12</td>
<td>![Image](380x409 to 432x481)</td>
<td>3l</td>
<td>98b</td>
<td>34b</td>
<td>95b</td>
</tr>
</tbody>
</table>
pentane,

C0.5 mol% catalyst loading
Table 2
Examination of Rh$_2$ (R-BNP)$_4$ Loading

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst loading (mol%)</th>
<th>reaction time (h)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>93</td>
<td>97</td>
</tr>
<tr>
<td>2a</td>
<td>0.5</td>
<td>1</td>
<td>83</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>12</td>
<td>80</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>17</td>
<td>73</td>
<td>40</td>
</tr>
</tbody>
</table>

2.5 equiv. styrene used
Table 3

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Product</th>
<th>Yield (%)</th>
<th>ee (%)</th>
<th>Yield (%)</th>
<th>Ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5a</td>
<td>76</td>
<td>90</td>
<td>47</td>
<td>64</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5b</td>
<td>90</td>
<td>88</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5c</td>
<td>80</td>
<td>90</td>
<td>82</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5d</td>
<td>94</td>
<td>80</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5e</td>
<td>90</td>
<td>90</td>
<td>19</td>
<td>63</td>
</tr>
<tr>
<td>entry</td>
<td>Ar</td>
<td>product</td>
<td>yield (%)</td>
<td>ee (%)</td>
<td>yield (%)</td>
<td>Ee (%)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5f</td>
<td>81</td>
<td>89</td>
<td>49</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5g</td>
<td>72</td>
<td>86</td>
<td>79</td>
<td>48</td>
</tr>
</tbody>
</table>
Table 4
A Guide to Chiral Dirhodium-(II) Catalyzed Cyclopropanation

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Ar</th>
<th>catalyst</th>
<th>yield (%)</th>
<th>ee(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rh₂(R-DOSP)₄</td>
<td>66-93</td>
<td>82.92</td>
</tr>
<tr>
<td></td>
<td>Rh₂(S-PTAD)₄</td>
<td>80-87</td>
<td>80.97</td>
</tr>
<tr>
<td></td>
<td>Rh₂(R-BNP)₄</td>
<td>63-93</td>
<td>88.97</td>
</tr>
</tbody>
</table>

R=H, Cl
R'=H, alkyl, Cl, OMe

Tetrahedron. Author manuscript; available in PMC 2014 July 08.