Expression, purification and crystallization of adenosine 1408 aminoglycoside-resistance rRNA methyltransferases for structural studies

Natalia Zelinskaya, Emory University
C. Robert Rankin, Emory University
Rachel Macmaster, Emory University
Miloje Savic, Emory University
Graeme L Conn, Emory University

Journal Title: Protein Expression and Purification
Volume: Volume 75, Number 1
Publisher: Elsevier | 2011-01, Pages 89-94
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1016/j.pep.2010.07.005
Permanent URL: http://pid.emory.edu/ark:/25593/f514f

Final published version: http://dx.doi.org/10.1016/j.pep.2010.07.005

Copyright information:
© 2010 Elsevier Inc. All rights reserved.
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommerical-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed November 6, 2019 10:52 PM EST
Expression, purification and crystallization of adenosine 1408 aminoglycoside-resistance rRNA methyltransferases for structural studies

Natalia Zelinskayaa, C. Robert Rankinb, Rachel Macmastera,c, Miloje Savica, and Graeme L. Conna,*

aDepartment of Biochemistry, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA 30322, USA.

bBiochemistry, Cell and Developmental Biology Program, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta GA 30322, USA.

cVisiting researcher from Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

Abstract

High-level resistance to a broad spectrum of aminoglycoside antibiotics can arise through either N7-methyl guanosine 1405 (m\textsubscript{7}G1405) or N1-methyl adenosine 1408 (m\textsubscript{1}A1408) modifications at the drug binding site in the bacterial 30S ribosomal subunit decoding center. Two distinct families of 16S ribosomal RNA (rRNA) methyltransferases that incorporate these modifications were first identified in aminoglycoside-producing bacteria but were more recently identified in both human and animal pathogens. These resistance determinants thus pose a new threat to the usefulness of aminoglycosides as antibiotics, demanding urgent characterization of their structures and activities. Here, we describe approaches to cloning, heterologous expression in \textit{E. coli}, and purification of two A1408 rRNA methyltransferases: KamB from the aminoglycoside-producer \textit{Streptoalloteichus tenebrarius} and NpmA identified in a clinical isolate of pathogenic \textit{E. coli} ARS3. Antibiotic minimum inhibitory concentration (MIC) assays and \textit{in vitro} analysis of KamB and NpmA using circular dichroism (CD) spectroscopy, S-adenosyl-L-methionine (SAM) binding by isothermal titration calorimetry and 30S subunit methylation assays showed both enzymes were soluble, folded and active. Finally, crystals of each enzyme complexed with SAM were obtained, including selenomethionine-derived KamB, that will facilitate high-resolution X-ray crystallographic analyses of these important bacterial antibiotic-resistance determinants.

INTRODUCTION

Detailed molecular structure-function studies of antibiotic resistance determinants in bacterial populations are urgently needed to support development of new strategies to counter their increasing threat to the clinical use of antibiotics. Among the mechanisms of resistance to the
ribosome-targeting aminoglycoside antibiotics are the expression of enzymes that chemically modify either the drug or its binding site within the 16S ribosomal RNA (rRNA) [1]. Among the latter group, two families of aminoglycoside-resistance rRNA methyltransferase enzymes have been identified that confer overlapping but distinct resistance phenotypes against different structural classes of aminoglycosides [2]. These enzymes methylate either N1 of A1408 or N7 of G1405 to produce m^1A_{1408} and m^7G_{1405} respectively. The aminoglycoside-resistance 16S rRNA methyltransferases were first identified in drug-producing bacteria [3] but are now increasingly being identified as a cause of aminoglycoside resistance in both human and animal pathogens [4,5]. Recently, major advances were made with the first high resolution crystal structure determination of two examples of the G1405 methyltransferase family, Sgm [6] and RmtB [7], from aminoglycoside-producing and pathogenic bacteria respectively. However, to date, equivalent structures for the A1408 methyltransferases are lacking. Thus methods for expression and purification of these proteins to facilitate their detailed structural and functional characterization are urgently needed.

Here, we describe the expression, purification and characterization of the A1408 rRNA methyltransferases KamB from the nebramycin producer *Streptalloteichus tenebrarius* [8,9] and its plasmid-borne ortholog NpmA from human pathogenic *Escherichia coli* ARS3 [10]. The recombinant enzymes expressed from synthetic genes exhibit characteristic resistance phenotypes in *E. coli*, are active in vitro and form protein crystals suitable for high-resolution structural analyses. Furthermore, we have found the approaches described here to be generally applicable to other rRNA methyltransferases of both the Class I and IV (SPOUT) RNA methyltransferase superfamilies [12].

MATERIALS AND METHODS

Construction of plasmids encoding functional A1408 rRNA methyltransferases

Genes encoding methyltransferases KamB (NCBI CAF33037) and NpmA (NCBI BAF80809) were synthesized with codon optimization for expression in *E. coli* (GeneArt). The kamB gene included DNA sequence encoding an additional 60 amino acids at the protein N-terminus identified as critical for expression of an active methyltransferase enzyme [2,11]. Both were cloned into the vector pET44a (Novagen) as NdeI/HindIII fragments using restriction enzyme sites incorporated during gene synthesis to produce expression plasmids pET44a-KamB and pET44a-NpmA. The expressed proteins contained a short N-terminal peptide sequence (MGS) from translation of sequence corresponding to an additional restriction enzyme site (BamHI) 3’ of the NdeI cloning site. No other additional amino acids or purification tags were added to the authentic KamB or NpmA protein sequences.

Antibiotic minimum inhibitory concentrations (MIC) were measured in liquid media for *E. coli* BL21 (DE3) transformed with empty pET44a, pET44a-KamB or pET44a-NpmA plasmid. Initial cultures for each experiment were grown to saturation in Luria-Bertani (LB: 5 g yeast extract, 10 g peptone from casein, and 10 g sodium chloride in 1 L deionised water) medium supplemented with 100 µg/ mL ampicillin. 10 ml fresh LB medium containing 0.05 mM isopropyl-β-D-thiogalactoside (IPTG) and various concentrations (0 – 1200 µg/ mL) of kanamycin, gentamicin, neomycin or apramycin was inoculated at 1:100 dilution using each starter culture and incubated at 37 °C for 16 hours with vigorous shaking. Assays were performed at least in triplicate and the MIC was defined as the lowest concentration of antibiotic for which no growth could be detected ($A_{600} < 0.05$).

Protein expression and purification

Chemically competent *E. coli* BL21 (DE3) were transformed with pET44a-KamB or pET44a-NpmA, a single colony of each used to inoculate 10 ml of LB medium with 100 µg/ mL
ampicillin and cultures grown to saturation at 37 °C. These cultures were used to inoculate (1:100 dilution) autoinduction media [13] containing 100 μg/ml ampicillin and protein expression was induced by incubation to culture saturation at 37 °C with vigorous shaking for ~20 hours.

Cell pellets were resuspended in 20 mM Tris buffer (pH 8.0 for KamB and 7.0 for NpmA) containing 150 mM NaCl, 2 mM β-mercaptoethanol and 100 μM PMSF, and lysed by sonication for 2 minutes (cycling 1 s on, 2 s off, level 5.5; Misonix S3000). Insoluble cell debris was removed by centrifugation at 21,000 rcf for 40 minutes and the supernatant filtered sequentially through 5 μm and 0.45 μm filters (Millipore). Samples were then loaded onto a 20 ml HiPrep Heparin 16/10 FF column attached to an ÄKTApurifier 10 (GE Healthcare). Unbound proteins were washed from the column with 100 ml (5 CV) of Buffer A (20 mM Tris buffer, pH 8.0 or pH 7.0, 150 mM NaCl and 2 mM β-mercaptoethanol) and eluted using a 200 ml (10 CV) 0–100% linear gradient of Buffer B (20 mM Tris pH 8.0 or pH 7.0, 1 M NaCl and 2 mM β-mercaptoethanol). Eluted proteins were analyzed by SDS-PAGE and fractions containing the target protein pooled and concentrated using Amicon Ultra centrifugal concentration devices (10,000 MWCO; Millipore). Concentrated proteins were further purified on a HiLoad™ 26/20 Superdex 200 gel filtration column (GE Healthcare), eluting over 1.5 CV of Buffer A. Target protein content at each stage of purification and the final sample quality was assessed by SDS-PAGE.

Isothermal Titration Calorimetry (ITC)

Purified proteins (1.4 – 1.8 mg/ml) were dialyzed exhaustively against 20 mM Tris buffer (pH 8.0 for KamB and 7.0 for NpmA) containing 150 mM NaCl. The final dialysis buffer was used to prepare S-adenosyl-L-methionine (SAM) solution (2 or 2.5 mM). A VP-ITC microcalorimeter (Microcal) was used to perform 35×10 μl injections of SAM into protein or buffer (to measure heats of dilution). ITC experiments were performed in triplicate and analyzed using Origin 7 software.

In vitro methyltransferase Assays

E. coli (MRE600) 30S and 50S subunits were isolated essentially as described previously [14]. Methylation reactions contained 32 pmol of ribosomal subunits, 32 pmol of purified KamB or NpmA, 0.7 μCi (13.2 μCi/ mmol) or 1.0 μCi (10.0 μCi/ mmol) S-adenosyl-L-[methyl-3H]-methionine ([3H]-SAM; GE Healthcare) and methylation buffer (50 mM Hepes-KOH pH 7.5, 10 mM MgCl₂, 50 mM NH₄Cl, and 5 mM β-mercaptoethanol) adjusted to 40 μL final volume. Before addition to the reaction mixture, ribosomal subunits were preheated at 42 °C. Each reaction was sampled at time 0, 5, 10, 20, 30, 40 and 60 minutes, and 5 μL of the reaction mixture added directly to 50 μL of ice-cold 5% trichloroacetic acid. Methyltransferase activity of total proteins from purification steps was measured in the same way except that reactions were sampled at only 0 and 10 minute time points. Quenched samples were filtered under vacuum through GF/C filter discs (Whatman) and washed with 3 × 100 μL of ice-cold 5% trichloroacetic acid and 2 × 100 μL of ethyl alcohol. Liquid scintillation counting was performed on a Beckman LS 5000TD liquid scintillation counter in Ultima Gold™ F (Perkin Elmer).

Circular Dichroism (CD) spectroscopy

Purified proteins were dialyzed exhaustively against 20 mM NaHPO₄ buffer (pH 8.0 for KamB and 7.0 for NpmA) containing 150 mM NaF. KamB (0.4 mg/mL) and NpmA (0.3 mg/mL) CD spectra from 260 to 190 nm with 0.2 nm step size were collected on a Jasco J-810 spectropolarimeter using a 1.0 mm path length cell thermostated at 20 °C. Five individual spectra for each protein were recorded, averaged and background corrected using the instrument software.
Analysis of protein secondary structure was performed using Dichroweb [15]. Each available deconvolution algorithm was tested and CDSSTR [16] found to give the best fit to the experimental data. The values for KamB and NpmA secondary structure content are the averaged output from CDSSTR using each of the three possible reference spectra data sets for the wavelength range used (260–190 nm).

Protein crystallization and X-ray diffraction studies

Crystallization conditions were identified from commercial screens of 96 conditions (Molecular Dimensions or Hampton Research) using a Phoenix nanoliter dispensing robot (Art Robbins Instruments). Crystallization was performed by sitting drop vapor diffusion at 20 °C using KamB or NpmA (10 mg/ml), with or without 1 mM SAM or 1 mM S-adenosylhomocysteine (SAH), in Tris buffer (pH 8.0 and 7.0, respectively) and 150 mM NaCl. Crystals of apo-KamB, KamB-SAH, KamB-SAM and SeMet-KamB-SAM were grown from essentially identical conditions. Two different NpmA-SAM and one NpmA-SAH crystal forms were grown under two different solution conditions. Cryoprotection for low temperature X-ray data collection was achieved by adding or increasing the concentration of PEG 400, MPD or polyethylene glycol, or by drawing the looped crystal through PFPE PFO-X175/08 (Hampton Research). Diffraction experiments were performed at the Southeast Regional Collaborative Access Team (SER-CAT) beamline at the Advanced Photon Source (APS). Complete data sets were collected and processed for each crystal.

RESULTS

Expression and purification of A1408 rRNA methyltransferases

Synthetic KamB and NpmA genes optimized for expression in E. coli were used to create recombinant protein expression plasmids based on the pET44a vector. Protein expression in E. coli BL21(DE3) was accomplished using the autoinduction method of Studier [13] and monitored by SDS-PAGE (Figure 1). Following cell lysis by sonication and centrifugation to remove insoluble cell debris, supernatants contained 260 – 400 mg total soluble protein per liter of culture (6 – 9 g cells) including an estimated 90 – 160 mg of target protein (details shown for KamB in Table 1). KamB and NpmA were purified from the supernatant using the same two-step chromatographic procedure. Filtered supernatant was first applied to a heparin sepharose affinity column (see Materials and Methods), unbound proteins washed out and the target protein eluted over a linear NaCl gradient (150 – 1000 mM). SDS-PAGE was used to identify KamB or NpmA containing fractions and these were pooled and concentrated for further purification using a Superdex 200 gel filtration column. Comparison to protein standards (10–600 kDa; data not shown) run on the same column indicated that each protein eluted at a volume corresponding to a molecular weight of 20–25 kDa, in good agreement with calculated values for KamB and NpmA of 23.7 and 25.1 kDa, respectively.

Recombinant KamB and NpmA proteins are active in bacteria and in vitro

Before testing the activity of purified KamB and NpmA proteins in vitro, we first measured the ability of these recombinant proteins to confer resistance to bacteria in minimal inhibitory concentration (MIC) assays. When overexpressed from the pET constructs, both enzymes conferred characteristic resistance spectra [2], i.e. high level resistance to kanamycin, neomycin and apramycin but lower resistance to gentamicin (Table 2).

The A1408 rRNA methyltransferases are SAM-dependent enzymes, proposed from sequence analyses [11] to possess a Class I methyltransferase SAM-binding core fold. The binding of SAM to KamB and NpmA was measured using isothermal titration calorimetry (ITC) and a dissociation constant (K_d) of ~80 µM obtained for both enzymes (Figure 2). Binding of SAM by these A1408 16S rRNA methyltransferases is thus ~4 fold weaker than for Sgm (K_d ~18...
µM), the only G1405 aminoglycoside-resistance methyltransferase for which such measurements have been made to date [6,17], and ~17 fold weaker than for RsmC (K_d 4.8 µM), another 16S rRNA targeting methyltransferase [18].

To complete the characterization of the recombinant KamB and NpmA proteins we performed in vitro ribosome 30S subunit methylation assays using [³H]-SAM. Methylation assays were performed using equivalent amounts of total protein before or after heparin-affinity purification and with fully purified KamB and NpmA (Figure 3). Differences in 30S methylation were only observed for the crude or partially purified total protein samples at the early time sampling points (shown for 10 minutes in Figure 3A), presumably due to the high expression levels of each protein and thus significant recombinant enzyme activity present in each. These data demonstrate that the purification procedure enriches enzyme activity, as expected from the increased homogeneity (Figure 1), and that these recombinant enzymes robustly methylate 30S subunits. As expected, the A1408 16S rRNA methyltransferases have no activity against 50S subunits or naked 16S rRNA (data not shown). Thus our approaches to expression and purification produce large quantities of highly homogeneous and active protein, suitable for structural analyses.

KamB and NpmA form protein crystals that diffract to high resolution

To begin structural characterization of the A1408 rRNA methyltransferases we collected circular dichroism (CD) spectra for KamB and NpmA (Figure 4). These data indicate that the proteins are folded, soluble and possess a mixed α/β structure as expected for Class I methyltransferases [12].

Approximately 500 – 1000 crystallization conditions were screened at 20 °C for KamB and NpmA as the apo-enzyme or complex with SAM or SAH. Crystals were obtained for apo-KamB, KamB-SAM, NpmA-SAM and NpmA-SAH (Table 3), and the initial conditions for each optimized if required by systematic variation of each component. Complete data sets for KamB-SAM and three different crystal forms of NpmA-SAM were collected at the SER-CAT beamline at APS. All have been processed with good statistics and one complex of each protein (both P₂₁ forms) proved to be suitable for high resolution structure determination. To facilitate phasing and structure determination, selenomethionine-derived KamB protein was expressed, purified and crystallized using essentially identical procedures, and a complete data set to 2.0 Å resolution collected at the selenium peak at the SER-CAT beamline.

DISCUSSION

The design and synthesis of E. coli codon optimized gene constructs for the aminoglycoside-resistance A1408 16S rRNA methyltransferases has allowed the generation of new protein expression constructs that routinely yield in excess of 100 mg purified target protein per liter of bacterial culture. Both KamB and NpmA methyltransferases were expressed without addition of sequences, such as 6 × His, that enable purification but may potentially interfere with protein function or crystallization. Instead, we relied on a two-step procedure combining heparin affinity and gel filtration chromatographies to produce highly homogeneous protein. The success of this purification strategy is, at least part, likely attributable to the very high expression levels of the target proteins, KamB and NpmA. However, we have successfully used the same purification strategy with other enzymes, including several Class I G1405 16S rRNA methyltransferases and the Class IV (SPOUT) A1067 23S rRNA methyltransferase Tsr where expression was more modest (5–20 mg/ L culture; data not shown). In the latter example, where Tsr contained an N-terminal 6 × His, heparin affinity chromatography was found to be as effective for producing homogeneous and crystallizable protein as the published procedure using Ni²⁺ affinity [19]. Thus, where protein expression is robust, this strategy appears to be
a generally applicable method for purification of RNA methyltransferases suitable for structural studies.

The data presented here provide the first comparative in vitro functional characterization of A1408 methyltransferases from aminoglycoside-producer (KamB) and human pathogen (NpmA) bacteria. Our data suggest that these enzymes employ similar mechanisms of SAM binding and, despite relatively low sequence identity (~30%), are likely to adopt very similar three dimensional structures. Our success in identifying crystallization conditions for both KamB and NpmA will underpin future detailed structural and functional characterization of these important bacterial antibiotic resistance determinants.

Abbreviations

- APS: Advanced Photon Source
- CD: circular dichroism
- CV: column volumes
- ITC: isothermal titration calorimetry
- KamB: kanamycin-apramycin-resistance (rRNA) methyltransferase
- m^1^A: N1-methyl adenosine
- m^7^G: N7-methyl guanosine
- MIC: minimum inhibitory concentration
- MME: monomethylether
- MPD: 2-methyl-2,4-pentanediol
- MWCO: molecular weight cut-off
- NpmA: ‘novel plasmid-mediated methyltransferase A’
- PEG: polyethylene glycol
- PFPE: perfluoropolyether
- rcf: relative centrifugal force (× g)
- rRNA: ribosomal RNA
- SAH: S-adenosylhomocysteine
- SAM: S-adenosyl-L-methionine
- SER-CAT: SouthEast Region Collaborative Access Team

Acknowledgments

This work was supported by the National Institutes of Health [AI088025] and in part by laboratory start-up funds from the Department of Biochemistry, Emory University School of Medicine. We thank the staff at SER-CAT beamline APS for assistance with X-ray data collection and Dr. Ewan W. Blanch for management of the Wellcome Trust grant [079242] providing salary support for RM.

REFERENCES

2. Savic M, Lovric J, Tomic TI, Vasiljevic B, Conn GL. Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially

Protein Expr Purif. Author manuscript; available in PMC 2012 January 1.

Protein Expr Purif. Author manuscript; available in PMC 2012 January 1.
FIGURE 1. SDS-PAGE analysis of KamB protein expression and purification
For induction of protein expression (‘Cells’), samples shown correspond to ‘uninduced’ (lane U) and ‘induced’ (lane I) BL21 (DE3) cells grown in LB and autoinduction medium, respectively (sample loading was matched for cell density measured by absorbance at 600 nm). Purification from soluble supernatant (lane S) is indicated by analysis of samples following Heparin affinity (lane 1) and subsequent gel filtration (lane 2) chromatographies. Lane M is protein molecular weight marker (sizes indicated on right).
FIGURE 2. Measurement of A1408 16S rRNA methyltransferase-SAM binding by isothermal titration calorimetry (ITC)
Representative titrations and the derived dissociation constants (K_d) for (A) KamB-SAM and (B) NpmA-SAM interaction. K_d values shown are the average of three independent experiments.
FIGURE 3. Analysis of A1408 16S rRNA methyltransferase activity using an *in vitro* 30S subunit methylation assay

(A) Enrichment of methyltransferase activity during protein purification monitored by incorporation of 3H into 30S subunits from $[^3$H]-SAM after 10 minutes. (B) Time course assays using final purified KamB and NpmA methyltransferases.
FIGURE 4. Circular dichroism (CD) spectroscopic analysis of KamB and NpmA
Protein CD spectra were deconvoluted using the CDSSTR algorithm via Dichroweb to produce
the indicated protein secondary structure contents (see Materials and Methods).

<table>
<thead>
<tr>
<th>Estimated secondary structure (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>KamB</td>
</tr>
<tr>
<td>NpmA</td>
</tr>
</tbody>
</table>
TABLE 1

Summary of KamB protein purification.

<table>
<thead>
<tr>
<th>Purification Step</th>
<th>KamB</th>
<th>Total protein/gram cells (mg)</th>
<th>Estimated purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleared lysate</td>
<td>43.4</td>
<td>35 – 40</td>
<td></td>
</tr>
<tr>
<td>Heparin</td>
<td>21.0</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Gel filtration</td>
<td>14.5</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

Analysis of A1408 rRNA methyltransferase activity in bacterial culture (MIC assay).

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Minimum Inhibitory Concentration (MIC; µg/ ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kanamycin</td>
</tr>
<tr>
<td>None</td>
<td>10</td>
</tr>
<tr>
<td>pET44a</td>
<td>10</td>
</tr>
<tr>
<td>pET44a-KamB</td>
<td>>1200</td>
</tr>
<tr>
<td>pET44a-NpmA</td>
<td>>1200</td>
</tr>
</tbody>
</table>
TABLE 3
Crystallization and preliminary analysis of KamB and NpmA protein crystals.

<table>
<thead>
<tr>
<th>Protein</th>
<th>KamB-SAM</th>
<th>NpmA-SAM</th>
<th>NpmA-SAH</th>
<th>NpmA-SAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallization Conditions</td>
<td>200–300 mM Tris-HCl (pH 8.0), KSCN, 10–25% PEG 2000 MME.</td>
<td>100 mM Hapes (pH 7.5), 13–18% PEG 6000, 3–6% MPD.</td>
<td>100 mM Hapes (pH 7.5), 13–18% PEG 6000, 3–6% MPD.</td>
<td>100 mM Bicine pH 9.0, 7–12% PEG 20000, 1–2.5% Dioxane.</td>
</tr>
<tr>
<td>Crystal Cryoprotection</td>
<td>Added 20–25% PEG400</td>
<td>Increased MPD to 25%</td>
<td>Drawn through PFPE</td>
<td>Added 25% ethylene glycol</td>
</tr>
<tr>
<td>Space group</td>
<td>(P_2_1)</td>
<td>(P_2_1)</td>
<td>(P_2_1)</td>
<td>(P_3_2)</td>
</tr>
<tr>
<td>Maximum Resolution (Å)</td>
<td>1.7</td>
<td>1.8</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>(R_{merge}) (^{a,b})</td>
<td>0.05 (0.285)</td>
<td>0.067 (0.395)</td>
<td>0.088 (0.585)</td>
<td>0.064 (0.449)</td>
</tr>
<tr>
<td>(I / \sigma(I))</td>
<td>16.8 (3.4)</td>
<td>20 (3.4)</td>
<td>18.5 (2.5)</td>
<td>18.1 (3.1)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.1 (92.0)</td>
<td>99.9 (99.7)</td>
<td>96.5 (97.9)</td>
<td>99.8 (99.9)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>3.8 (3.6)</td>
<td>4.6 (4.3)</td>
<td>3.1 (3.1)</td>
<td>4.0 (4.0)</td>
</tr>
</tbody>
</table>

\(^a\)Values in parenthesis are for the highest resolution shell.

\(^b\)\(R_{merge} = \sum_{hkl} \sum_{i} | i_i(hkl) - \langle i(hkl) \rangle | / \sum_{hkl} \sum_{i} | i_i(hkl) |.\)