Unusual Presentations of Metastatic Prostate Carcinoma as Detected by anti-3 F-18 FACBC PET/CT

Rianot Amzat, Emory University
Pooneh Taleghani, Emory University
Bital Savir Baruch, Emory University
Peter Nieh, Emory University
Viraj Master, Emory University
Raghuveer Halkar, Emory University
Melinda Lewis, Emory University
Michelle Faurot, Emory University
Leah M. Bellamy, Emory University
Mark Goodman, Emory University

Only first 10 authors above; see publication for full author list.

Journal Title: Clinical Nuclear Medicine
Volume: Volume 36, Number 9
Publisher: Lippincott, Williams & Wilkins | 2011-09-01, Pages 800-802
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1097/RLU.0b013e318219b47e
Permanent URL: https://pid.emory.edu/ark:/25593/v0093

Final published version: http://dx.doi.org/10.1097/RLU.0b013e318219b47e

Copyright information:
© 2011 by Lippincott Williams & Wilkins.

Accessed January 9, 2020 8:01 AM EST
Unusual presentations of metastatic prostate carcinoma as detected by anti-1-amino-3-[18F]fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) PET-CT

Rianot Amzat, MD
Bital Savir-Baruch, MD
Peter T. Nieh, MD
Viraj A. Master, MD
Raghuveer K. Halkar, MD
Melinda M. Lewis, MD
Michelle Faurot, BS
Leah M. Bellamy, RN
Mark M. Goodman, PhD
David M. Schuster, MD

1Radiology, Emory University, Atlanta, GA, United States
2Urology, Emory University, Atlanta, GA, United States
3Pathology & Laboratory Medicine, Emory University, Atlanta, GA, United States

Abstract

Prostate carcinoma is the second most common cause of cancer related mortality in males in the United States. The pattern of metastatic disease of prostate cancer is well recognized, frequently involving sclerotic bone lesions and abdomino-pelvic lymph nodes. Anti-1-amino-3-[18F] fluorocyclobutane-1-carboxylic acid (anti-3-[18F] FACBC) is a synthetic amino acid analog positron emission tomography (PET) radiotracer with reported utility in the detection of prostate carcinoma. We present two cases of unusual presentations of prostate carcinoma, one with malignant ascitis and omental implants and the other with lytic bone lesions detected with anti-3-[18F]FACBC.

Keywords

anti-3-[18F] FACBC; prostate cancer; PET

Acknowledgments

Research Support: Research sponsored by the NIH (1 R01 CA 129356-01) and the Georgia Cancer Coalition.

REFERENCES

A 65 year-old male with a history of Gleason 8 (3+5) prostate adenocarcinoma treated with radiation therapy 5 years before, presented with a rising PSA (40ng/ml at presentation, 302ng/ml on day of anti-3-[18F]FACBC scan) and symptoms of partial bowel obstruction. Anti-3-[18F]FACBC PET-CT performed as part of an ongoing clinical trial with methods previously reported (1, 2, 7) revealed abnormal uptake in omental implants (SUV$_{max}$ 7.7, small arrows), retroperitoneal lymph nodes (SUV$_{max}$ 7.2, large arrows) and ascitis (SUV$_{max}$ 3.1) in axial CT (a), anti-3-[18F]FACBC PET (b) and fused image (c). There was also uptake activity in a 5cm peri rectal mass (SUV$_{max}$ 9.3) and the prostate (SUV$_{max}$ 7.3) (not shown). Patient underwent negative colonoscopy and biopsy with findings of nonspecific mild architectural irregularity of the colonic mucosa. CT-guided FNA of a left paraaortic lymph node was positive for metastatic prostate adenocarcinoma as shown in the 400× histology image of the cell block H & E stain (d) and strongly positive PSA immunostain (e). Cytology of the ascitic fluid also revealed metastatic cells of prostatic origin. Maximum
intensity projection (MIP) image (f) demonstrates typical biodistribution of ^{18}F
FACBC (8, 9) with intense hepatic and pancreatic uptake (arrows) and diffuse abdominal
uptake secondary to malignant implants and ascitis. Advanced prostate carcinoma can
present with a wide range of clinical features. The most common sites of metastasis include
the axial skeleton, lymph nodes and lungs. Uncommon sites of metastatic disease include
adrenal gland, kidney, brain, pancreas, genitalia, and breasts (3). Metastasis to the omentum
and malignant ascitis without bone metastasis as seen in this case are rare presentations (4).
Clin Nucl Med. Author manuscript; available in PMC 2014 August 22.
A 73 year old male presented with rising PSA of 2.97 after prostatectomy for Gleason 8 (3+5) prostate adenocarcinoma 5 years before. Scan demonstrated intense uptake in the antastomosic urethra (not shown), as well as intense focal uptake in a solitary lytic lesion in right superior pubic ramus (SUV_{max} 12.6,large arrows) in axial CT (a) $\text{anti-3-[}^{18}\text{F}]\text{FACBC}$ PET (b) and fused Image (c). Note relatively little to no bladder excretion (small arrows) which is an advantage of $\text{anti-3-[}^{18}\text{F}]\text{FACBC}$ for prostate cancer imaging. (1, 2, 7). Bone scan (d) showed no evidence of osteoblastic metastatic disease in the axial or appendicular
skeleton although bladder may have obscured the lesion. Patient underwent CT-guided biopsy of the right pubic ramus lesion, with a histological confirmation of metastatic prostate disease as shown in the 400x histology image of the cell block H & E stain (e) and strongly positive PSA immunostain (f). Bone metastasis occurs in about 70% of patients with advanced prostate cancer (5). Prostate adenocarcinoma metastasis to bone are typically multiple and sclerotic with only about 10% presenting as solitary lesions (6). Presentation of a purely osteolytic solitary lesion is rare (6).