Incident heart failure in relation to vascular disease: Insights from the Health, Aging, and Body Composition Study

Hasan Khan, University of Cambridge
Andreas Kalogeropoulos, Emory University
Faiez Zannad, Institute of Lorraine Heart and Blood Vessels
Catherine N. Marti, Emory University
Peter Wilson, Emory University
Vasiliki Georgiopoulou, Emory University
Alka M. Kanaya, University of California San Francisco
Anne B. Newman, University of Pittsburgh
Erik Schelbert, University of Pittsburgh
Tamara B. Harris, National Institute on Aging

Only first 10 authors above; see publication for full author list.

Journal Title: European Journal of Heart Failure
Volume: Volume 16, Number 5
Publisher: Wiley: 12 months | 2014-05-01, Pages 526-534
Type of Work: Article | Post-print: After Peer Review
Publisher DOI: 10.1002/ejhf.69
Permanent URL: https://pid.emory.edu/ark:/25593/tx8qd

Final published version: http://dx.doi.org/10.1002/ejhf.69

Copyright information:
© 2014 The Authors.
Accessed January 1, 2020 3:55 PM EST
Incident Heart Failure in Relation to Vascular Disease:
Insights from the Health, Aging, and Body Composition Study

Hassan Khan, MD, PhD¹, Andreas P. Kalogeropoulos, MD, PhD², Faiez Zannad, MD³, Catherine N. Marti, MD, MPH², Peter WF Wilson, MD², Vasiliki V. Georgiopoulou, MD², Alka M. Kanaya, MD⁴, Anne B. Newman, MD, MPH⁵, Erik Schelbert, MD⁶, Tamara B. Harris, MD, MS⁷, Stephen Kritchevsky, PhD⁸, Clyde Yancy, MD, MS⁹, Mihai Gheorghiade, MD¹⁰, Gregg C. Fonarow, MD¹¹, and Javed Butler, MD, MPH² for the Health ABC study

¹Department of Public Health and Primary Care, University of Cambridge, United Kingdom
²Cardiology Division, Emory University, Atlanta, GA
³CHU Nancy, Institute of Lorraine Heart and Blood Vessels, Nancy, France
⁴Department of Medicine, University of California, San Francisco
⁵Departments of Epidemiology and Medicine, University of Pittsburgh, Pittsburgh, PA
⁶Cardiology Division, University of Pittsburgh, Pittsburgh, PA
⁷Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, MD
⁸Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC
⁹Cardiology Division, Northwestern Feinberg School of Medicine, Chicago, IL
¹⁰Center for Cardiovascular Innovation, Northwestern Feinberg School of Medicine, Chicago, IL
¹¹Cardiology Division, University of California Los Angeles, Los Angeles, CA

Abstract

Background—The contribution of heart failure (HF) unrelated to vascular disease to the overall HF burden in older adults is not well characterized.

Methods and Results—We assessed HF incidence and outcomes in 2895 participants of the Health ABC Study (age 74±3 years, 48.4% men, 41.4% black) in relation to vascular disease (coronary or peripheral or cerebrovascular disease) present either at baseline or developed prior to HF. During 11.4 years follow-up, 493 participants developed HF; 134 (27.2%) in participants without any prior vascular disease and 177 (36.8%) without coronary disease. Both baseline (hazard ratio [HR] 2.4, 95% confidence interval [CI] 1.9–2.8) and incident vascular disease (HR 4.3, 95% CI 3.6–5.2) were associated with HF. During a median follow-up of 2.1 years after HF
onset, 67.5% participants died. Annual mortality after HF development was 21.3% in those with compared to 24.6% in those without vascular disease (HR 1.11, 95%CI 0.87–1.43; P=0.399). There were 658 all-cause (436.3/1000 person-year) and 523 HF related (346.4/1000 person-year) hospitalizations after HF development. There was no significant difference in hospitalizations between those with and without vascular disease (RR 1.04 95%CI: 0.86–1.24 for all-cause, and RR 0.84 95%CI 0.69–1.02 for HF hospitalization). HF with preserved ejection fraction was more common in participants without vascular disease (67.0% vs. 55.0%, P=0.040).

Conclusion—A significant proportion of HF in older adults develops without prior vascular disease. Outcomes for these patients are comparably poor to those with preceding vascular disease. These data suggest the need for more targeted HF prediction and prevention efforts.

Keywords
Heart failure; epidemiology; race; sex

Heart failure (HF) is an emerging pandemic that portends a poor prognosis with a 5-year mortality rate of approximately 50%. Epidemiological evidence, mostly from younger cohorts, ascribes the majority of HF burden to coronary artery disease (CAD). This assertion, at least in part, underlies the current paradigm of cardiovascular disease (CVD) prediction and prevention efforts to focus exclusively on either CAD, or vascular disease in general, including CAD, cerebrovascular, and peripheral vascular disease (PVD) combined. At present there are no targeted interventions focused exclusively on HF prevention. If indeed the vast majority of incident HF was preceded by clinically manifest vascular disease, then targeted HF specific prevention efforts may not be necessary or cost-effective.

According to a recent American Heart Association policy statement, the proportional increase in HF over the next two decades will be more than any other major cardiovascular condition, which will translate into a 215% increase in direct medical costs of care by 2030. In older adults, HF may develop due to age-related cardiac changes, or other comorbidities, that may or may not be related to at least manifest CAD. Cardiovascular fibrotic changes and structural remodeling related to hypertension, diabetes, renal dysfunction, and obesity, may all cause HF in the absence of clinical CAD. Beyond increased prevalence of cardiometabolic risk factors, older adults demonstrate higher levels of low-grade inflammation, endothelial dysfunction, and higher prevalence of atrial fibrillation. These age-related changes can contribute to development of manifest HF independent of intervening CAD. The risk related to these risk factors may be lessened with generic prevention interventions e.g. lifestyle choices. More targeted efforts focused on interstitial matrix remodeling may provide alternate unexplored means to prevent HF in older adults. Such targeted interventions may not be warranted, however, if indeed most HF was truly preceded by CAD, in which case the current prevention focus on vascular disease should suffice.

There is a paucity of information on reliable population-based estimates of HF epidemiology in relation to vascular disease in older adults. To address this issue, we studied the data on the participants of the Health Aging and Body Composition (Health ABC) Study.
Methods

Study Population

The Health ABC Study enrolled 3075 well-functioning, community dwelling adults aged 70 to 79 years between April 1997 and June 1998. Participants were identified from a random sample of white Medicare beneficiaries and all age-eligible black community residents in designated zip code areas surrounding Pittsburgh, PA and Memphis, TN. Exclusion criteria included difficulties with activities of daily living, obvious cognitive impairment, inability to communicate, anticipated move within 3 years, or participation in a trial involving lifestyle intervention. The institutional review boards at both study sites approved the protocol. Participants with known or missing HF status at baseline (N=140) and those with information missing on preceding vascular disease (N=40) were excluded from the analysis. The final cohort analyzed for this study included 2895 participants.

Study Outcomes

All participants were asked to report any hospitalizations and every 6 months were asked direct questions about interim events. Medical records for overnight hospitalizations were reviewed at each site. All first admissions with an overnight stay that was confirmed as related to HF were classified as incident HF. HF diagnosis was adjudicated based on symptoms, signs, chest radiograph results, and echocardiographic findings, using criteria similar to those used in the Cardiovascular Health Study.29 The criteria required at least HF diagnosis from a physician and treatment for HF.30 In addition data on left ventricular ejection fraction during the index HF hospitalization was available in subset of HF cases. All deaths were reviewed by the Health ABC Study diagnosis and disease ascertainment committee and underlying causes of death were determined by central adjudication.

Study Definitions

Race was self-defined by the participant. Hypertension was defined as self-reported history of physician diagnosis accompanied by use of antihypertensive medications. Diabetes mellitus was considered present if the participant reported a history of diabetes mellitus or use of anti-hyperglycemic medication. Smoking was defined as current, past (≥100 lifetime cigarettes), or never. Left ventricular hypertrophy was diagnosed based on the following criteria; R amplitude >26 mm in either V5 or V6, or >20 mm in any of leads I, II, III, aVF, or >12 mm in lead aVL or R in V5 or V6 plus S amplitude in V1 >35 mm. Left ventricular ejection fraction (LVEF) was defined as preserved if ≥40% or reduced if <40.

Prevalent CAD was defined as: (1) history of surgical or percutaneous revascularization; or (2) electrocardiographic evidence of myocardial infarction; or (3) self-reported history of myocardial infarction or angina accompanied by use of antianginal medications. Incident CAD was defined as hospitalization for myocardial infarction or angina pectoris, or elective revascularization. Prevalent vascular disease was defined as prevalent: (1) CAD; (2) cerebrovascular disease (history of stroke, transient ischemic attack, or carotid endarterectomy); or (3) PVD (history of intermittent claudication or vascular bypass or angioplasty).31, 32 Incident vascular disease was defined as incident (1) CAD; (2)
cerebrovascular disease (stroke, transient ischemic attack, or symptomatic carotid artery disease); (3) PVD; or (4) death due to cardiovascular causes.

Participants were classified as having “preceding CAD” if they had prevalent CAD at baseline or developed incident CAD that preceded or coincided with the onset of HF. Individuals were classified as having “preceding vascular disease” if they had prevalent CAD, cerebrovascular disease, or PVD at baseline or developed incident CAD, or cerebrovascular disease, or PVD that preceded or coincided with the onset of HF.

Risk Factors for Incident HF

We have previously reported independent predictors of incident HF in the Health ABC Study, including age, history of smoking, coronary heart disease, left ventricular hypertrophy, systolic blood pressure, heart rate, serum glucose, albumin, and creatinine levels. The association of these risk factors with risk of HF was assessed in both those with and without prior vascular disease.

Statistical Analysis

The baseline characteristics were compared in individuals with and without incident HF. Individual participant characteristics were also compared in those who develop HF with and without preceding vascular disease. Continuous variables were compared using the t-test and categorical variables with the chi-square test. Cumulative event rates were obtained with the Kaplan-Meier method and compared with the log-rank statistic. Time-to-event analyses were conducted using Cox proportional hazard models. The proportional hazards assumption was evaluated by examining the Schoenfeld residuals. To assess the association of established risk factors as identified in the Health ABC HF Risk Score (age, history of smoking, coronary heart disease, left ventricular hypertrophy, systolic blood pressure, heart rate, serum glucose, albumin, and creatinine levels) with HF in participants with vs. without baseline vascular disease, multivariable hazard ratios (HR) adjusted for gender were calculated. All-cause and HF-related hospitalizations post-HF development were analyzed as count data over time at risk. Hospitalization rates and rate ratios (RR) with 95% confidence intervals (CI) were obtained by Poisson regression model for participants who developed HF with vs. without preceding vascular disease, adjusted for age and gender. In a secondary analysis, we examined post HF outcomes in a subset of participants with LVEF available at the time of incident HF, categorized as preserved (≥40%) or reduced (<40). All analyses were performed using Stata release 11 (Stata Corp LP, College Station, Texas).

Results

Baseline Participant Characteristics

The mean age of participants was 74±3 years; 48.4% were men, 41.4% were black and 27.7% had prevalent vascular disease. The baseline characteristics are presented in Table 1. Compared to participants who did not develop HF, those who did were older, had higher systolic blood pressure, heart rate, and body mass index, in both individuals with and without a preceding vascular disease. Higher prevalence of diabetes mellitus and fasting
glucose levels, and lower high-density lipoprotein cholesterol levels were observed in participants who developed HF with preceding vascular disease only.

Incident Heart Failure

After median follow-up of 11.4 (interquartile range [IQR] 7.0, 11.7) years, 493 participants (16.8%) developed HF (annual rate 18.1/1000 person-years, 95%CI 16.5, 19.7). Among those participants who developed HF, 211 (42.8%) had prevalent vascular disease, 72 (14.6%) developed incident vascular disease before HF onset, 64 (13.0%) developed HF simultaneously with a vascular event, and 7 (1.4%) had missing information on vascular disease, and were subsequently dropped from further analysis. Overall, 134 (27.2%) participants developed HF without preceding or concomitant vascular event (Figure 1a) and 177 (36.8%) without preceding CAD (Figure 1b).

Incidence of HF increased progressively across age groups, both for those with (P=0.03) and without a preceding vascular event (P<0.001), Figure 2. Gender and race related incident HF event rates stratified by preceding vascular disease are shown in Table 2 and Figure 3. Blacks were more likely to develop HF than whites with preceding vascular disease (stratified log-rank χ^2 for race 4.21, P=0.04), but not without preceding vascular disease (stratified log-rank χ^2 for race 2.48, P=0.11).

Heart Failure Risk Factors

All Health ABC HF Risk Model variables (age, albumin, creatinine, heart rate, fasting glucose, left ventricular hypertrophy, systolic blood pressure, and smoking) were independently associated with HF in those with and without preceding vascular disease at baseline, Table 3. Systolic blood pressure and heart rate were more strongly associated with HF in those without preceding vascular disease (interaction P<0.05) in blacks. Both baseline (HR 2.4, 95% CI 1.9, 2.8) and incident (HR 4.3, 95%CI 3.6, 5.2) vascular disease was associated with HF.

Outcomes after Heart Failure Development

Participants who remained free of HF had an annual mortality of 4.2% (95%CI 3.9, 4.5) and an all cause hospitalization rate of 23.9 admissions per 1000 person-years. During a median follow-up of 2.1 (IQR 0.4, 5.1) years after HF onset, 67.5% participants died. Annual mortality was 21.3% (18.8, 24.2) after HF development in those with preceding vascular disease and 24.6% (19.9, 30.4) in those without vascular disease (HR 1.11, 95%CI 0.87, 1.43; P=0.399). Figure 4 shows the overall survival by HF status and vascular disease. There were 658 all-cause admissions (436.3 admissions per 1000 person-year) after HF development. Of these, 495 (75.2%; 438.1 per 1000 person-years) occurred in those with preceding vascular disease and 153 (23.2%; 425.7 per 1000 person-years) in those without vascular disease (RR 1.04 95% CI: 0.86–1.24, P=0.696). There were 523 HF related hospitalizations (79.5%; 346.4 per 1000 person-year). Of these, 373 (71.3%; 330.3 per 1000 person-years) occurred in those with preceding vascular disease and 143 (27.3%; 396.3 per 1000 person-years) in those without vascular disease (RR 0.84 95% CI: 0.69, 1.02, P=0.087).
Preserved vs. Reduced Ejection Fraction

Data on left ventricular ejection fraction during the index HF hospitalization was available in 381 (77.3%) participants. The ejection fraction median was 42%, IQR 30%–55%. Median ejection fraction was lower in those with than those without preceding vascular disease (40% vs. 50% respectively, P<0.030). Proportion of participants with reduced versus preserved left ventricular ejection fraction was 45.0% and 55.0% for those with preceding vascular disease and 33.0% vs. 67.0% for those without preceding vascular disease (P=0.040). Mortality and hospitalization risk was higher among participants with reduced ejection fraction versus preserved ejection fraction for participants with preceding vascular disease (HR 1.52, 95%CI 1.14, 2.02 for mortality, P=0.004; RR 1.18, 95% CI: 0.97, 1.43, P=0.092 for all-cause hospitalization; and RR 1.32, 95%CI: 1.06, 1.64, P=0.013 for HF hospitalization) and for those without preceding vascular disease (HR 1.13, 95%CI 0.68, 1.89 for mortality, P=0.637; RR 2.31, 95% CI 1.62, 3.28, P<0.001 for all cause hospitalization; and RR 2.36, 95%CI 1.64, 3.39, P<0.001 for HF hospitalization).

Discussion

In this study, consistent with previous reports, we found that vascular disease was an independent predictor of HF in older adults and that the majority of incident cases occurred among individuals with some form of vascular disease34, 35. However, over a quarter of HF cases were not preceded by a vascular event and one third of cases developed among participants without clinically manifest CAD. These proportions represent a relatively large segment of the at-risk HF population that would be overlooked by the current cardiovascular disease prediction and prevention strategies focusing either specifically on CAD or vascular disease in general.

As the proportion of older individuals in the population increases, the prevalence of HF is predicted to increase substantially36, 37. Older individuals are more likely than younger people to develop HF, especially HF with preserved ejection fraction (HFpEF), due to increasing prevalence of cardiometabolic risk factors with ageing and age-related cardiac structural and functional changes. Our data are consistent with this finding that participants without preceding vascular disease were particularly prone to HFpEF. Beyond increased prevalence of hypertension, diabetes, obesity, and renal dysfunction, all of which can lead to cardiomyopathic changes and exert direct negative effects on the myocardium without preceding CAD, older adults demonstrate higher levels of low-grade inflammation19. In cohort studies, inflammation has been demonstrated to contribute to development of HF22 potentially through altered response to stressors, enhanced extracellular matrix remodeling, direct effects on the myocardium, and functional vascular changes (increased vascular stiffness and endothelial dysfunction) even without overt vascular disease38. In addition, endothelial function worsens with ageing20 and has been demonstrated to contribute to development of HF independently of traditional risk factors23, 39. Finally, the incidence and prevalence of atrial fibrillation is increasing with age21 and this may further precipitate clinical HF in older adults with stiffer left ventricles.24 Therefore, as the population ages, it is expected that the proportion of HF not associated with vascular disease will increase, which in turn will continue to increase the proportion of HFpEF in the general population.
These trends are confirmed by recent community-based observational study and by registries, showing the increases in hospitalization of patients with HFrEF compared to HF with reduced ejection fraction (HFrEF). Participants who develop HF without preceding vascular disease are at similar risk for adverse outcomes as compared to those with vascular disease, underscoring the clinical importance of this entity. Participants who developed HF without preceding vascular disease had significantly higher readmission risk than age-matched older adults without HF, and this risk was comparable to those who developed HF with preceding vascular disease. This is consistent with previous reports indicating that patients with HFrEF, which is less likely to be related to previous vascular disease, have similar event rates compared to HFrEF patients. In agreement with previous data patients with HFrEF may be more likely to survive HF hospitalization than those with HFrEF, even though they have equally high rates of readmission.

In our study, those participants developing HF without preceding vascular disease were more likely to be older, had higher systolic blood pressure, heart rate and body mass index. However, these characteristics were common among those with a history of vascular disease preceding development of HF as well. While those with a history of vascular disease preceding development of HF had a higher prevalence of diabetes, other risk factors, such as hypertension were similar between the two groups. This is also consistent with previous reports indicating that those with HFrEF are more likely to be older and have a history of hypertension.

There may be physiologic mechanisms specific to development of HF in older people unrelated to vascular disease. For example, more collagen is deposited in the ventricles with aging. This may be related to the aging process per se or could be secondary to common co-morbidities such as diabetes and hypertension. Future research is needed to determine the mechanisms relevant to HF development among the elderly beyond that which can be attributed to vascular disease. In addition targeted risk prediction models are needed for HF in the elderly or HF may be including in pan-cardiovascular risk prediction models, to aid in risk stratification for HF, especially among the elderly.

Our study has several limitations. The diagnosis of incident HF was based on HF hospitalization and therefore likely underestimated the true incidence. The Health ABC Study did not record data on atrial fibrillation and did not perform echocardiograms at baseline, and therefore no data on asymptomatic left ventricular dysfunction or atrial fibrillation in our cohort. However, since prediction and prevention strategies are targeted mostly to clinically manifest HF, this limitation does not minimize the importance of our results. The incidence of asymptomatic left ventricular dysfunction in previous community-based epidemiologic studies was very low. In addition, this is consistent with coronary disease risk prediction and prevention strategies, e.g. in such studies, patients do not routinely undergo left heart catheterization or carotid or peripheral angiography to rule out asymptomatic coronary artery or other vascular disease, and the focus is on clinically manifest vascular or coronary disease. Nevertheless future studies must address the
incidence of HF in relation to unrecognized CAD, which is an important clinical entity in the elderly and is associated with increased mortality.48

In conclusion, the present study underscores the importance of vascular disease in relation to risk of HF but also reaffirms the existence of an important yet largely ignored clinical entity of HF without preceding vascular disease. Integrating incident HF into cardiovascular disease risk prediction and prevention strategies should be considered. Targeted HF prevention strategies may be beneficial at the population level and need further study.

Acknowledgments

Sources of Funding: This study was supported in part by the Intramural Research Program of the National Institutes of Health, National Institute on Aging (NIA), and contracts, N 01-AG-6-2101; N01-AG-6-2103; N01-AG-6-2106; NIA grant: R01-AG028050, and NINR grant R01-NR012459; and by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR000454. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

10. Taylor AL, Ziesche S, Yancy C, Carson P, D’Agostino R Jr, Ferdinand K, Taylor M, Adams K, Sabolinski M, Worcel M, Cohn JN. Combination of isosorbide dinitrate and hydralazine in blacks...

Figure 1.
Incident heart failure events stratified by vascular disease

* Individuals with missing prior vascular disease status or HF at baseline were excluded (N=180)
Vascular disease (VD): includes Coronary heart disease, cerebrovascular disease and peripheral vascular disease.
Figure 2. Heart failure rates per 1000 person-years
Error bars represent 95% confidence intervals.
Figure 3. Incident heart failure by race, gender, and vascular disease status

Individuals with vascular disease were more likely to develop HF (stratified log-rank χ^2 for vascular disease 165.69, $P<0.0001$). Blacks participants with prior vascular disease were more likely to develop HF (stratified log-rank χ^2 for sex 0.41, $P=0.523$; for race 4.21, $P=.04$) but not in those without vascular disease (stratified log-rank χ^2 for sex 0.23, $P=.63$; for race 2.48, $P=.11$).
Figure 4. Cumulative survival by HF status, vascular disease status and history of LVH

A: LVH status at baseline did not affect overall survival (stratified log-rank χ^2 for LVH 0.05, $P=0.828$) B: Individuals with HF overall had shorter survival than those without HF (stratified log-rank χ^2 for vascular disease 108.13, $P<0.0001$). C Individuals with prior vascular disease had shorter survival than those without prior vascular disease (stratified log-rank χ^2 for prior vascular disease 40.67, $P=<0.001$). D In individuals with HF both with and without prior vascular disease had a lower cumulative survival than those with no HF and prior vascular disease or those without HF and vascular disease (stratified log-rank χ^2 152.18, $P=<0.001$).
Baseline Participant Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Entire Cohort (N=2895)</th>
<th>Incident Heart Failure Cohort (N=486)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall N=2895</td>
<td>Heart Failure N=486</td>
</tr>
<tr>
<td>Age (years)</td>
<td>73.6(2.9)</td>
<td>74.2(2.9)</td>
</tr>
<tr>
<td>Male (%)</td>
<td>1393(48.4%)</td>
<td>253(51.7%)</td>
</tr>
<tr>
<td>White (%)</td>
<td>1705(59.4%)</td>
<td>272(56.1%)</td>
</tr>
<tr>
<td>Smoking Status (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1280(44.0%)</td>
<td>189(38.5%)</td>
</tr>
<tr>
<td>Current</td>
<td>612(20.9%)</td>
<td>92(18.7%)</td>
</tr>
<tr>
<td>Past</td>
<td>304(11.0%)</td>
<td>60(12.1%)</td>
</tr>
<tr>
<td>Alcohol (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1435(49.5%)</td>
<td>261(53.9%)</td>
</tr>
<tr>
<td>Occasional</td>
<td>612(20.9%)</td>
<td>92(18.7%)</td>
</tr>
<tr>
<td>1–7 drinks/week</td>
<td>621(22.0%)</td>
<td>94(19.8%)</td>
</tr>
<tr>
<td>>8 drinks/week</td>
<td>215(7.7%)</td>
<td>37(7.7%)</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>426(14.3%)</td>
<td>105(22.0%)</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>1443(49.5%)</td>
<td>302(61.6%)</td>
</tr>
<tr>
<td>Left Ventricular Hypertrophy (%)</td>
<td>344(12.1%)</td>
<td>80(16.5%)</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>38(1.1%)</td>
<td>17(3.3%)</td>
</tr>
<tr>
<td>Body Mass Index (kg/m2)</td>
<td>27.3(4.8)</td>
<td>28.1(4.8)</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>136.0(21.0)</td>
<td>141.3(23.0)</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>65.3(11.1)</td>
<td>66.9(12.0)</td>
</tr>
<tr>
<td>Fasting glucose (mg/dl)</td>
<td>94.0(87.0,105.0)</td>
<td>96.0(89.0,113.0)</td>
</tr>
<tr>
<td>Albumin (g/dl)</td>
<td>4.0(0.3)</td>
<td>4.0(0.3)</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>1.0(0.9,1.2)</td>
<td>1.0(0.9,1.2)</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
<td>203.3(38.3)</td>
<td>201.5(38.1)</td>
</tr>
<tr>
<td>Low density lipoprotein (mg/dl)</td>
<td>121.9(34.6)</td>
<td>121.5(33.5)</td>
</tr>
<tr>
<td>High density lipoprotein (mg/dl)</td>
<td>54.3(17.1)</td>
<td>51.9(16.6)</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>118.0(88.0,163.0)</td>
<td>119.0(88.0,166.0)</td>
</tr>
</tbody>
</table>
* Value expressed as median (interquartile range) are due to highly skewed distributions and compared with the Mann-Whitney test

** Information on prior vascular event was missing for 40 participants
Table 2

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Vascular Disease**</th>
<th>No Vascular Disease**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heart Failure Cohort Incidence(95% CI)</td>
<td>Heart Failure Cohort Incidence(95% CI)</td>
<td>Heart Failure Cohort Incidence(95% CI)</td>
</tr>
<tr>
<td>Overall</td>
<td>493</td>
<td>2935</td>
<td>18.1 (16.6–19.8)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>273</td>
<td>1720</td>
<td>16.5 (14.6–18.6)</td>
</tr>
<tr>
<td>Black</td>
<td>220</td>
<td>1215</td>
<td>20.6 (18.0–23.5)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>256</td>
<td>1407</td>
<td>20.5 (18.1–23.1)</td>
</tr>
<tr>
<td>Female</td>
<td>237</td>
<td>1528</td>
<td>16.1 (14.1–18.2)</td>
</tr>
</tbody>
</table>

** Information on vascular disease was missing for 40 participants

Incidence rate calculated as per 1000 person-years

CI = confidence interval

The rates of incident HF significantly differ by race P<0.01; sex, P<0.01 and by vascular disease status, P<0.001 in all subjects.
Table 3

Heart Failure Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Overall</th>
<th>Vascular Disease</th>
<th>No Vascular Disease</th>
<th>P interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RR (95% CI)</td>
<td>P</td>
<td>RR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Systolic blood pressure mmHg</td>
<td>1.3 (1.2–1.4)</td>
<td><0.001</td>
<td>1.2 (1.1–1.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Glucose mg/dl</td>
<td>1.2 (1.1–1.3)</td>
<td><0.001</td>
<td>1.2 (1.1–1.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>Left Ventricular Hypertrophy</td>
<td>1.9 (1.4–2.5)</td>
<td><0.001</td>
<td>1.4 (1.0–1.8)</td>
<td>0.032</td>
</tr>
<tr>
<td>Current Smoking</td>
<td>1.3 (1.1–1.6)</td>
<td>0.007</td>
<td>1.2 (0.9–1.5)</td>
<td>0.151</td>
</tr>
<tr>
<td>GFR ml/min/1.73m²</td>
<td>0.9 (0.8–0.9)</td>
<td>0.001</td>
<td>0.8 (0.7–0.9)</td>
<td>0.001</td>
</tr>
<tr>
<td>Albumin g/dl</td>
<td>0.9 (0.8–1.0)</td>
<td>0.040</td>
<td>0.9 (0.8–1.0)</td>
<td>0.294</td>
</tr>
<tr>
<td>Heart Rate per minute</td>
<td>1.2 (1.1–1.3)</td>
<td><0.001</td>
<td>1.2 (1.1–1.3)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Note: RR (95% CI) for continuous variable are presented per 1SD higher levels of the variable

The effect estimates are adjusted for age, gender and race

BP=blood pressure, GFR= (estimated) glomerular filtration rate, HR=hazard ratio for incident heart failure, CI=confidence interval

Information on prior vascular event was missing for 40 participants