Asymmetric synthesis of host-directed inhibitors of myxoviruses

Terry W. Moore, Emory University
Kasinath Sana, Emory University
Dan Yan, Emory University
Pahk Thepchatri, Emory University
John M. Ndungu, Emory University
Manohar T. Saindane, Emory University
Mark A. Lockwood, Emory University
Michael George Natchus, Emory University
Dennis C Liotta, Emory University
Richard Karl Plemper, Emory University

Only first 10 authors above; see publication for full author list.

Journal Title: Beilstein Journal of Organic Chemistry
Volume: Volume 2013, Number 9
Publisher: Beilstein-Institut | 2013-01-30, Pages 197-203
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.3762/bjoc.9.23
Permanent URL: http://pid.emory.edu/ark:/25593/f22rt

Final published version:

Copyright information:
© 2013 Moore et al; licensee Beilstein-Institut. This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/).

Accessed May 11, 2020 1:10 PM EDT
Asymmetric synthesis of host-directed inhibitors of myxoviruses

Terry W. Moore¹, Kasinath Sana¹, Dan Yan²,³, Pahk Thepchatri¹, John M. Ndungu¹, Manohar T. Saindane¹, Mark A. Lockwood¹, Michael G. Natchus¹, Dennis C. Liotta¹,⁴, Richard K. Plemper²,³,⁵, James P. Snyder¹,⁴ and Aiming Sun*¹,§

Abstract

High-throughput screening (HTS) previously identified benzimidazole 1 (JMN3-003) as a compound with broad antiviral activity against different influenza viruses and paramyxovirus strains. In pursuit of a lead compound from this series for development, we sought to increase both the potency and the aqueous solubility of 1. Lead optimization has achieved compounds with potent antiviral activity against a panel of myxovirus family members (EC₅₀ values in the low nanomolar range) and much improved aqueous solubilities relative to that of 1. Additionally, we have devised a robust synthetic strategy for preparing 1 and congeners in an enantio-enriched fashion, which has allowed us to demonstrate that the (S)-enantiomers are generally 7- to 110-fold more potent than the corresponding (R)-isomers.

Introduction

Myxoviruses are divided into two evolutionarily distinct yet related families: the orthomyxoviridae, which is composed largely of the influenza viruses, and the paramyxoviridae, which includes respiratory syncytial virus (RSV), measles virus (MeV), human parainfluenza virus (HPIV) and others [1]. Because myxoviruses are responsible for the majority of human
morbidity and mortality cases due to viral respiratory illness globally, a therapeutic strategy that targets these viruses could have a substantial impact on human health [2-5]. Although antivirals typically seek to disable viral proteins, cellular host proteins can also be targeted, as is the case with selzentry, which inactivates the coreceptor (CCR5) for human immunodeficiency virus (HIV) entry [6]. The former approach is likely to yield compounds with a narrow spectrum of antiviral activities, and such inhibitors will certainly face the inevitable challenge of resistance [7,8]. Our research group has been actively engaged in the identification of small molecule inhibitors against myxoviruses in recent years [8-12], with a particular focus on the development of agents that target host-cell proteins enabling viral reproduction. Advantages of this strategy include a vastly expanded list of potential targets; a broader spectrum of activity, because many of the relevant host proteins are shared among related viruses; and, in principle, less susceptibility to the development of resistance.

Using high-throughput screening, in combination with counter-screening for detecting a broadened viral target spectrum that extends to other pathogens of the myxovirus families, our research group has been successful in identifying small-molecule antiviral hits resident in host cells [13]. One such molecule recently described is benzimidazole 1 [14] (Figure 1). Although the compound is active in vitro against a number of different para- and orthomyxoviruses, 1 has poor water solubility (<15 μg/mL), which may contribute to its low oral bioavailability [15]. Additionally, it was shown that the methyl group at the stereogenic center alpha to the carbonyl is important for biological activity [8,12,14]. Compound 1 was previously prepared as the racemate, but subsequently separated into enantiomers by chiral HPLC. To enable large-scale preparation of the pure isomers for further pharmacokinetic and animal studies, we present here an asymmetric synthesis of 1 and its congeners with improved aqueous solubility and antiviral potency.

Results and Discussion
Design. We previously reported a series of compounds with antiviral activity against a number of myxoviruses [8,12,14]. Structure–activity relationship (SAR) studies suggested both the 2-chloro-4-methylanilide and the central α-thiopropionamide to be moieties that confer good activity. Relatively unexplored in our previous work was the importance of the p-methoxyphenyl ring as well as the influence of the stereochemistry at the chiral center. In the current work, we examine the replacement of the p-methoxyphenyl ring with basic moieties that may increase aqueous solubility while maintaining activity, and we also developed synthetic routes to produce each enantiomer of these compounds.

Synthesis. The compounds were prepared by modifications of our previously reported routes. Briefly, nitroanilines 7 were obtained by one of two routes: ortho-nitrobenzaldehyde (2) was treated with N-methylpiperazine (3) in the presence of sodium triacetoxyborohydride to give nitrobenzene 4, which was reduced under hydrogenation conditions to provide aniline 5. o-Fluoronitrobenzene (6) was coupled with the previously formed aniline under S_N_Ar conditions to furnish anilino nitrobenzene 7a (Scheme 1). Alternatively, meta- and para-nitrophenylethanol 8 were combined with o-fluoronitrobenzene (6) to deliver o-nitroanilines 9. The hydroxy groups of 9

Figure 1: Structure of first-generation lead compound 1.

Scheme 1: Synthesis of anilino nitrobenzene 7a.
were activated as the \(p \)-nitrobenzenesulfonates 10 and displaced with morpholine to give \(o \)-nitroanilines 7b and 7c (Scheme 2). Hydrogenation was used to reduce \(o \)-nitroanilines 7 followed by cyclization using thiocarbonyldiimidazole to yield benzothiazoles 11. In the case of the racemates, these were combined with \(\alpha \)-bromopropionamide 12 to afford racemic 14 (Scheme 3).

Scheme 3: Asymmetric synthesis of (\(R \))- and (\(S \))-isomers by using two different approaches.
benzimidazole and \(\alpha \)-hydroxyamide \(13 \) (prepared from thionyl chloride-mediated coupling of (L)-lactic acid \(17 \) and 2-chloro-4-methylaniline \(16 \) \[17\]) (Scheme 4b)) in the presence of a slight excess of triphenylphosphate and diethyl azodicarboxylate, we acquired the desired products \(14 \) in good yield and ee. This methodology is attractive because of the high ee that can be obtained from the inexpensive and readily available (L)-lactic acid \(17 \). However, the enantiomeric (D)-lactic acid is substantially more expensive, and as seen below, the products arising from (L)-lactic acid are less active, making this route less attractive than the route utilizing chiral \(\alpha \)-bromopropionamides \(12 \).

Crystal structures of (\(\text{R} \))- and (\(\text{S} \))-1 obtained by crystallization from ethyl ether allowed us to unambiguously assign the absolute configuration of each enantiomer. Shown in Figure 2 are the (\(\text{S} \))-enantiomer (left, magenta) and (\(\text{R} \))-enantiomer (right, cyan) of 1. It is interesting to note that the hydrogen-bond formed between the amide N–H and the unsubstituted benzimidazole nitrogen in these crystal structures results in pseudo seven-membered rings. Whether this conformation is biologically relevant is unknown.

Structure–activity relationships

A small set of compounds was synthesized based on variations of 1 by replacing the \(p \)-methoxyphenyl group with other substituted phenyl rings or heterocyclic rings. The compounds were initially assayed in two screening assays: (1) a measles virus cytopathic effect (CPE) reduction assay \[12\] and (2) a solubility assay based on laser nephelometry \[18\]. Unfortunately, compounds with the highest aqueous solubilities (>100 \(\mu \)g/mL) had the poorest antiviral activity (i.e., 14a, 14d, and 18f, Table 1). Since 14a, 14b, and 14e showed good antiviral activities, as well as moderate aqueous solubilities, we decided to examine the broader antiviral activities of these compounds and to determine what, if any, effect the stereocenter present in each of these compounds may cause.

We were motivated by the results of these two assays to more completely characterize the antiviral activities and solubility parameters of the most promising compounds. We assayed the compounds in three additional biological assays: (1) a firefly luciferase minireplicon assay whose output is driven by infection with influenza A/sw/Texas/2009 (WSN); (2) an assay using a renilla luciferase reporter embedded as an additional transcription unit in the genome of a measles virus (MeV) recombinant; and (3) a colorimetric assay that measures reduction of MTT...
Table 1: In vitro screening of analogues of 1.

<table>
<thead>
<tr>
<th>Compd.</th>
<th>MeV<sup>a</sup> (CPE, µM)</th>
<th>Aqueous solubility<sup>b</sup> (µg/mL at pH 7.4)</th>
<th>Compd.</th>
<th>MeV<sup>a</sup> (CPE, µM)</th>
<th>Aqueous solubility<sup>b</sup> (µg/mL at pH 7.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.1</td>
<td><15</td>
<td>18f-tartrate</td>
<td>ND<sup>c</sup></td>
<td><15</td>
</tr>
<tr>
<td>18a</td>
<td>>75</td>
<td>140</td>
<td>18f-benzenesulfonate</td>
<td>ND</td>
<td><15</td>
</tr>
<tr>
<td>18b</td>
<td>>0.29</td>
<td>19</td>
<td>18g</td>
<td>0.05<sup>d</sup></td>
<td><15</td>
</tr>
<tr>
<td>18c</td>
<td>>75</td>
<td><15</td>
<td>14a</td>
<td>0.179</td>
<td>20</td>
</tr>
<tr>
<td>18d</td>
<td>4.9</td>
<td>22</td>
<td>14b</td>
<td>0.20</td>
<td>15</td>
</tr>
<tr>
<td>18e</td>
<td>>75</td>
<td>120</td>
<td>14c</td>
<td>0.6</td>
<td>25</td>
</tr>
<tr>
<td>18f</td>
<td>0.27</td>
<td><15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a50% inhibitory concentrations were calculated by using the variable-slope (four parameters) nonlinear regression-fitting algorithm embedded in the Prism 5 software package (GraphPad Software). Values represent averages of four experiments; highest concentration assessed, 75 µM.

^bDetermined through laser nephelometry; ^cND. Not determined. ^dVirus yield reduction assay was used.

Figure 3: L-Tartaric acid salt (18f-tartrate) and benzenesulfonic acid salt (18f-benzenesulfonate) of 18f.

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) as a surrogate for general cytotoxicity, reported here as CC₅₀. Additionally, the aqueous solubilities of the compounds were measured by using laser nephelometry at pH 3.0, 5.0, and 7.4 (Table 2).

Analysis of the data reveals several trends. First, with the exception of a single case in which enantiomer potencies are similar (18c, ΔEC₅₀ ≤ 3-fold), six other comparisons reveal the (S)-enantiomer to be more active than the (R)-form by 7 to 110-fold. Although we do not know the identity of the specific bio-
Table 2: Antiviral potencies and solubilities for 1 and analogues.

<table>
<thead>
<tr>
<th>Compd.</th>
<th>R</th>
<th>EC<sub>50</sub> (nM)<sup>a</sup></th>
<th>Solubility (µg/mL)<sup>b</sup></th>
<th>CC<sub>50</sub> (nM)<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MeV WSN pH 3.0 pH 5.0 pH 7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>31 13 5 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(S)-1</td>
<td></td>
<td>37 5 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(R)-1</td>
<td></td>
<td>880 160 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>14b</td>
<td></td>
<td>13 0.3 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(S)-14b</td>
<td></td>
<td>11 1 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(R)-14b</td>
<td></td>
<td>210 110 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>14c</td>
<td></td>
<td>110 43 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(S)-14c</td>
<td></td>
<td>180 36 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(R)-14c</td>
<td></td>
<td>530 120 15 15 15 15</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>14a</td>
<td></td>
<td>41 8 300 92 20 20</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(S)-14a</td>
<td></td>
<td>68 4 300 92 20 20</td>
<td>>50000</td>
<td></td>
</tr>
<tr>
<td>(R)-14a</td>
<td></td>
<td>470 120 300 92 20 20</td>
<td>>50000</td>
<td></td>
</tr>
</tbody>
</table>

^a50% effective concentrations were calculated by using the variable-slope (four parameters) nonlinear regression-fitting algorithm embedded in the Prism 5 software package (GraphPad Software). Values represent averages of four experiments; highest concentration assessed 75 µM.

^bDetermined through laser nephelometry. Values represent averages of four experiments; highest concentration assessed 50 µM. CC₅₀: Not determined.

^cAssayed as a 1:1 mixture of atropisomers. Details of the separation of the atropisomers will be discussed elsewhere.

logical target(s), the enantio-discrimination implies to us that the molecules bind in a well-defined binding pocket that is able to accommodate the S-enantiomer more readily than the (R)-enantiomer.

We note that the activity trends for the (S)- and (R)-enantiomers against the measles and WSN influenza strain are qualitatively similar. However, for antiviral potency differences between the racemate and the (S)-enantiomer, the attenuation is indistinguishable under the testing conditions. Accordingly, we attribute the assay discrepancy to the inherent variability in the assay system.

While the compounds appear to be active against both influenza and measles virus, they are somewhat more active against the influenza virus strain (WSN) than against the measles virus. Among the compounds surveyed, (S)-14b is the most potent compound, with EC₅₀ values of 1–11 nM against the two viruses. Because the CC₅₀ values of the compounds are greater than 50 µM, the upper limit of the assay, we assume that the compounds are not generally cytotoxic, giving selectivity indices (CC₅₀/EC₅₀) for the active enantiomers of at least 10³–10⁴.

We have also assayed the most active compounds in a human parainfluenza viral (HPIV) titer assay based on plaque assay titration. The values for (S)-1, (S)-14a, (S)-14b, and (S)-14c are 80, 13, 80, and 11 nM, respectively. These data further corroborate the broad-spectrum activity of these compounds.

Lastly, the solubilities of the compounds have been improved relative to that of 1. At all pH values examined, the aqueous
solubility of I was below the limits of detection of the nephelometry assay (i.e., <15 µg/mL). However, compounds bearing basic amine functionalities have improved solubilities relative to I, particularly at acidic pH values, but also at pH 7.4.

Conclusion

We have extended our previously published work on host-directed inhibitors of myxovirus replication by preparing analogues that positively address the poor aqueous solubility of I (JMN3-003) while simultaneously improving its potency. The compounds presented here furnish EC\textsubscript{50} values as low as 1 nM to >300 µg/mL at pH 3.0. Additionally, we have developed two complementary methods for the synthesis of each of the enantiomers of the compounds discussed and have unequivocally demonstrated that the (S)-enantiomer is more active in this series than the (R)-enantiomer. Further work from our laboratories regarding the in vivo efficacy of these compounds is underway.

Supporting Information

Contains detailed synthetic procedures and characterization data for molecules described herein, a more detailed description of the laser nephelometry assay, and data tables for the crystal structures of (S)-I and (R)-I.

Supporting Information File 1

Detailed synthetic procedures and characterization data.

Acknowledgments

This work was supported, in part, by Public Health Service Grants AI071002 and AI085328 (to R. K. P.) from the NIH/NIADD and by Public Health Service Grant HG003918-02 (to J.P.S.) from the NIH. We also thank Deborah Culver for solubility testing and Dr. John Bacsa for helpful discussions of crystal structures.

References

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.9.23