Deficiency of Phosphoinositide 3-Kinase Enhancer Protects Mice From Diet-Induced Obesity and Insulin Resistance

Chi Bun Chan, Emory University
Xia Liu, Emory University
Dae Young Jung, Pennsylvania State University
John Y. Jun, Pennsylvania State University
Hongbo R. Luo, Harvard University
Jason K. Kim, Pennsylvania State University
Keqiang Ye, Emory University

Journal Title: Diabetes
Volume: Volume 59, Number 4
Publisher: American Diabetes Association | 2010-01-12, Pages 883-893
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.2337/db09-1404
Permanent URL: http://pid.emory.edu/ark:/25593/fkzf9

Final published version: http://diabetes.diabetesjournals.org/content/59/4/883

Copyright information:
© 2010 by the American Diabetes Association
This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed September 27, 2019 5:01 PM EDT
Deficiency of Phosphoinositide 3-Kinase Enhancer Protects Mice From Diet-Induced Obesity and Insulin Resistance

Chi Bun Chan,1 Xia Liu,1 Dae Young Jung,2,3 John Y. Jun,2 Hongbo R. Luo,4 Jason K. Kim,2,3 and Keqiang Ye1

OBJECTIVE—Phosphoinositide 3-kinase enhancer A (PIKE-A) is a proto-oncogene that promotes tumor growth and transformation by enhancing Akt activity. However, the physiological functions of PIKE in peripheral tissues are unknown. Here, we describe the effect of PIKE deletion in mice and explore the role of PIKE-A in obesity development.

RESEARCH DESIGN AND METHODS—Whole-body PIKE knockout mice were generated and subjected to high-fat–diet feeding for 20 weeks. The glucose tolerance, tissue-specific insulin sensitivity, adipocyte differentiation, and lipid oxidation status were determined. The molecular mechanism of PIKE in the insulin signaling pathway was also studied.

RESULTS—We show that PIKE-A regulates obesity development by modulating AMP-activated protein kinase (AMPK) phosphorylation. PIKE-A is important for insulin to suppress AMPK phosphorylation. The expression of PIKE-A is markedly increased in adipose tissue of obese mice, whereas depletion of PIKE-A inhibits adipocyte differentiation. PIKE knockout mice exhibit a protected phenotype from high-fat–diet-induced obesity, liver steatosis, and diabetes. PIKE knockout mice also have augmented lipid oxidation, which is accompanied by enhanced AMPK phosphorylation in both muscle and adipose tissue. Moreover, insulin sensitivity is improved in PIKE-A–deficient muscle and fat, thus protecting the animals from diet-induced diabetes.

CONCLUSIONS—Our results suggest that PIKE-A is implicated in obesity and associated diabetes development by negatively regulating AMPK activity. *Diabetes* 59:883–893, 2010

Obesity is a result of imbalanced energy intake and expenditure in which the accumulation of excessive fat causes disorders such as type 2 diabetes, atherosclerosis, and dyslipidemia. Because of its increasing prevalence in most of the world, obesity has become a major health problem (1). Although genetic linkage analysis has successfully mapped potential loci in human genome for adiposity development (3), identifying all genetic variants that contribute to differences in body weight is still one of the major goals to fully understand the mechanism of obesity progression. Recent studies using genome-wide linkage scan revealed human chromosome trait 12q14.1, where the phosphatidylinositol 3-kinase (PI 3-kinase) enhancer (PIKE) gene *CENTG1* locates, has a strong correlation with serum lipid level and energy intake (4,5), suggesting PIKE may be a potential factor in regulating body weight. PIKEs are a family of GTPases that directly interact with PI 3-kinase and Akt and enhance their kinase activities (6–8). The family contains three members: PIKE-L, PIKE-S, and PIKE-A, which is generated from alternative splicing of the *CENTG1* gene. Whereas PIKE-S and -L are brain specific, PIKE-A is widely expressed, such that its mRNA could be detected in brain, heart, liver, muscle, spleen, thymus, and small intestine (9,10). The mode of action of PIKE is isoform specific in different cell types. PIKE-L couples to receptors such as netrin receptor (UNC5B) and metabotropic glutamate receptors I (mGluR-I) and links the activated receptor to PI 3-kinase pathway in neurons (11,12). PIKE-S localizes in nucleus and executes the protective effects of nerve growth factor by activating the nuclear PI 3-kinase cascade (8). PIKE-A, on the other hand, substantiates the kinase activity of Akt in glioblastomas and is involved in cancer invasion activity (6, 13,14). However, the role of PIKE-A in peripheral tissues remains unknown.

In many cases, insulin resistance is the major associated pathologic condition of obesity. However, the molecular mechanism of this obesity-induced disorder remains ambiguous. It has been proposed that lipotoxicity is one of the candidates to explain the role of excess lipid storage in insulin resistance onset. Accumulation of excess cellular lipid changes the lipid metabolism, enhances oxidative stress, and disrupts endoplasmic reticulum homeostasis (15). Increasing cellular lipid oxidation by pharmacologic interventions in obese subjects thus represents a potential therapeutic regimen to mitigate their diabetic complications. In this regard, AMP-activated protein kinase (AMPK) is one of the targets. AMPK is the master sensor for energy status and is responsible for metabolic homeostasis (16).
Activation of AMPK results in reducing hepatic gluconeogenenic gene expression and glucose production, increasing fatty acid oxidation, and enhancing glucose uptake. Therefore, AMPK activators such as AICAR and metformin are effective agents in relieving the obesity-induced insulin resistance in both laboratory and clinical tests (17).

To examine the role of PIKE in obesity, we developed the whole-body PIKE knockout (PIKE−/−) mice with ablation of all PIKE isoforms. Here we report that PIKE-A is implicated in adipocyte differentiation and obesity development. PIKE knockout elicits lipotoxicity and increased insulin sensitivity by enhancing AMPK activity, leading to resistance against high-fat diet (HFD)-induced obesity and diabetes.

RESEARCH DESIGN AND METHODS

Generation of knockout animals and genotyping. Heterozygous PIKE−/+ C57BL/6 mice with a targeted deletion of exons 3–6 of CNTG1 were generated under contract by OzeGene (Bentley, DC, Australia). Genotyping was performed by PCR using genomic DNA isolated from the tail tip. PCR was performed using a combination of primers D (5’-ACAGGATCTCGTGCACCCC-3’), H (5’-CTGCCCAACCTGACGAGTCTAG-3’), A (5’-TCATGTTGACG-GAAACCTCTG-3’), and C (5’-CCAGAGCCCTATCTATGGCTAG-3’).

Immunoprecipitation and Western blotting. Tissue extracts were prepared by homogenizing the tissues in buffer as reported (18). Antibodies used in the Western blot analysis were obtained from Santa Cruz Biotechnology (insulin receptor, Akt) and Cell Signaling Technology (anti-phosphor-Thr308 of Akt, anti-phosphor-Thr172 of AMPK, anti–phosphor-Ser79 of acetyl-CoA carboxylase [ACC], anti-AMPKα, and anti-ACC).

Southern blot analysis. Southern blot analysis using mouse tail genomic DNA was performed as described (19).

Analytic procedures. All animal experiments were performed according to the care of experimental animal guidelines from Emory University. Twelve-week-old female mice were fed with Chow or HFD (Research Diets) for 20 weeks. Blood glucose level was measured by ACCU-CHEK Advantage Blood Glucose Meter (F. Hoffmann-La Roche, Basel, Switzerland). Serum insulin was measured by ELISA (BD Biosciences). Glucose tolerance test (GTT) was performed on mice after peritoneal injection of D-glucose derived from fat. After HFD feeding for 14 weeks, obesity more prominent in mice fed with HFD (55% of calories from fat). After HFD feeding for 14 weeks, obesity developed in wild-type but not in PIKE−/− animals (Fig. 1A). Daily food intake of PIKE−/− mice was normal, but the amount of food intake in PIKE−/− mice was substantially less than that in the control fed HFD (Fig. 2B). Increased body weight was associated with a drastic gain of inguinal WAT weight in wild-type but not in PIKE−/− mice (312% in wild-type vs. 46.5% in knockout) (Fig. 2C). The adipocytes in PIKE−/− mice were also smaller in both feeding conditions (Fig. 2D and E). Moreover, circulating leptin and TNF-α concentrations were lower in PIKE−/− mice (Fig. 2F and G). Expression of PIKE-A was greatly enhanced in the WAT and muscle of mice fed with HFD and the genetically obese (ob/ob) mice (Fig. 2H, first and fifth panels). In contrast, no noticeable alteration of hepatic PIKE expression was detected among all the tested groups (Fig. 2H, third panel), suggesting a tissue-specific function of PIKE-A in obesity development.

PIKE is essential for adipocyte differentiation. Under Chow diet feeding conditions, expressions of mature adipocyte markers aP2 and the master regulators of adipocyte differentiation, PPARγ and C/EBPα (24, 25), were reduced in PIKE−/− WAT (Fig. 3A). However, no significant difference was found in preadipocyte marker Ppar-1 between wild-type and mutant. Comparable increment of

Statistical analysis. Results were considered significant when P < 0.05. Statistical analysis was performed using either Student t test, one-way ANOVA, or two-way ANOVA followed by Tukey multiple comparison test or Bonferroni post-tests using the computer program GraphPad Prism (GraphPad Software).

Detailed experimental procedures are in the supplementary methods (http://diabetes.diabetesjournals.org/cgi/content/full/db-09-1404/DC1).
FIG. 1. Targeted disruption of PIKE. A: Schematic representation of mouse PIKE (top), the targeting vector (middle), and the targeted gene region (bottom). The locations of loxP sites were marked as solid triangles and of FRT sites, as solid bars. B: Southern blot analysis of progeny produced from heterozygote mating. Genomic DNA was isolated from mouse tail and was digested with Nhe I and probed with fragment A as indicated. The 8.5-kb band represents the wild-type allele and the 6-kb fragment corresponds to the knockout allele. C: PCR screening of mice from heterozygote mating. Genomic DNA isolated from wild-type (+/H11545/H11545), heterozygous (+/H11545/H11545), and knockout (+/H11546/H11546) mice tail was used in PCR screening. The locations of primers used in the reactions were indicated in A. D: RT-PCR screening of PIKE expression in different tissues. Complementary DNA was synthesized from RNA extracted from various tissues as indicated. Primers D and H as shown in A were used in PCR. E: Western blot analysis of PIKE-A. Proteins extracts of different tissues from wild-type (+/+), heterozygous (+/+), and knockout (−/−) mice (3 months old) were prepared, and the expression of PIKE-A was detected using specific antibody against the COOH-terminal of human PIKE-A (top panel). The amount of tubulin in each sample was examined to demonstrate equal loading (bottom panel). Representative result of three mice from each genotype was shown. F: Weight of heart, spleen, pancreas, kidney, and inguinal WAT in 3-month-old mice. The weight was normalized with the total body weight and was expressed as means ± SEM (n = 5). Significant reduction of WAT weight was observed in PIKE−/− mice (***P < 0.001, Student t test).
for 20 weeks (animals (8–9 months old) that have been fed with chow diet or HFD)

Inguinal WAT cell area from wild-type (+/+), HFD, and C/EBPα mice was shown. Scale bar represents 50 μm.

Results were expressed as mean ± SEM (***P < 0.001 vs. the same genotype; b: P < 0.01 vs. the same diet treatment; one-way ANOVA).

FIG. 2. PIKE knockout mice are resistant to diet-induced obesity. A: Growth curve of 3-month-old wild-type (+/+) and PIKE knockout (−/−) mice fed with HFD. Body weight was measured weekly and expressed as mean ± SEM (n = 7–10; **P < 0.01, ***P < 0.001, two-way ANOVA).

B: Food intake by wild-type (+/+) and knock out (−/−) mice fed with chow or HFD was measured in a 3-day period. Results were expressed as mean ± SEM (***P < 0.001 vs. the same genotype; b: P < 0.01 vs. the same diet treatment; one-way ANOVA).

C: Weight of inguinal WAT and muscle (Fig. 4A), and PIKE null (−/−) mice treated with HFD during the GTT (Fig. 4B). A lower amount of insulin was also secreted in PIKE−/− mice treated with HFD during the GTT (supplementary Fig. 1A).

In parallel, less circulating insulin was detected in PIKE−/− mice in both feeding conditions (Fig. 4C), suggesting a higher insulin sensitivity. This notion was further supported by higher glucose infusion rate (Fig. 4D), whole-body glucose turnover (supplementary Fig. 1B), and glycogen synthesis (supplementary Fig. 1C) in PIKE−/− mice during the hyperinsulimemic-euglycemic clamp studies. Hepatic insulin resistance was also alleviated in PIKE−/− mice fed with HFD (supplementary Fig. 1D), which provides further explanation to the relieved diabetic phenotype in PIKE−/− mice because hepatic insulin resistance is associated with diabetes (27).

We also examined the insulin-stimulated signaling in tissues responsible for glucose utilization to reveal the molecular basis of the enhanced insulin sensitivity in PIKE−/− mice. In mice fed a normal chow diet, comparable tyrosine phosphorylation of insulin receptor occurred in WAT and muscle of both genotypes after in vivo insulin injection (Fig. 4E, first panel). However, insulin provoked higher insulin substrate-1 (IRS-1) phosphorylation, PI 3-kinase activity, and Akt phosphorylation in PIKE−/− WAT and muscle (Fig. 4E, treatment; one-way ANOVA). F: Circulating leptin concentration of wild-type (+/+) and PIKE knockout (−/−) mice (8–9 months old) that have been fed with chow or HFD for 20 weeks. Results were expressed as mean ± SEM (n = 4; **P < 0.01, ***P < 0.001 vs. the same genotype; a: P < 0.05, b: P < 0.01 vs. the same diet treatment; one-way ANOVA).

G: Circulating TNF-α concentration of wild-type (+/+) and PIKE knockout (−/−) mice (8–9 months old) that have been fed with chow or HFD for 20 weeks. Results were expressed as mean ± SEM (n = 4; **P < 0.01, ***P < 0.001 vs. the same genotype; a: P < 0.05, b: P < 0.01 vs. the same diet treatment; one-way ANOVA).

H: Elevated PIKE-A expression in the WAT and muscle of diet-induced or genetically obese mice. RNA from WAT, liver, and muscle of ob/ob mice or normal mice (8–9 months old) that have been fed with chow diet or HFD was extracted and reverse transcribed. (A high-quality color representation of this figure is available in the online issue.)
PIKE is essential for adipocyte differentiation. A: Impaired adipose gene expression in PIKE-null WAT. RNA from inguinal WAT of wild-type (+/+) and knockout (−/−) mice (8–9 months old) that have been fed chow or HFD for 20 weeks was collected and used in RT-PCR. Expression of preadipocyte markers Pref-1, mature adipocyte marker aP2, transcription factors PPARγ and C/EBPα shown. B: Oil red O staining of MEFs isolated from wild-type (+/+) and knockout (−/−) mice before (day 0) and after (day 8) induced adipocyte differentiation. Scale bar represents 50 μm. Representative result of three independent experiments is shown. C: Quantification of accumulated lipid in MEFs before (day 0) and after (day 8) isobutylmethylxathine-dexamethasone insulin (MDI) induction. Oil red O in the MEFs was extracted by isopropanol and measured in optical density 500 nm (**P < 0.01, ***P < 0.001 vs. different genotype under the same treatment; one-way ANOVA, Student t test). D: Impaired adipose gene expression in PIKE-null MEFs. RNA from MEFs of wild-type (+/+) and knockout (−/−) mice before (day 0) and after (day 8) induced adipocyte differentiation. Expression of mature adipocyte marker aP2 and transcription factors PPARγ and C/EBPα was normalized to GAPDH. Results were expressed as fold induction against the corresponding expression level in wild-type animals fed with chow diet (n = 3, **P < 0.01; ***P < 0.001 vs. noninduced control of the same genotype; c: P < 0.001 vs. different genotype under the same treatment; one-way ANOVA, n = 3). (A high-quality digital representation of this figure is available in the online issue.)

PIKE-A is an Akt upstream effector, which binds Akt and enhances its kinase activity in glioblastomas (6,13). It is thus anticipated that PIKE−/− mice would display diabetic phenotypes as deletion of Akt2 in mice showed impaired glucose tolerance (28). To our surprise, blood glucose level is normal in PIKE−/− mice. Because Akt1−/− or Akt3−/− mice have no obvious defect in glucose homeostasis, the normoglycemic condition in PIKE−/− mice could be explained if PIKE-A associates selectively with Akt1 and Akt3 rather than Akt2. As predicted, PIKE-A preferentially bound both Akt1 and Akt3 (supplementary Fig. 2A), suggesting that only Akt1 and Akt3 activities may be altered in PIKE−/− tissues. Concurrent with this notion, the brain mass of PIKE−/− mice was smaller than the control mice (supplementary Fig. 2B), a phenotype that is specifically observed in Akt3-null animals (29).

Lipid oxidation is enhanced in PIKE−/− mice. Animal models with lipoatrophy often associate with hyperlipidemia and ectopic lipid accumulation (30). However, significant changes in neither circulating triglyceride (Fig. 5A) nor ectopic lipid depositions in liver (Fig. 5B) were seen in the PIKE−/− mice, suggesting the excessively absorbed lipid during HFD feeding in PIKE-null animals may be metabolized rather than deposited as storage. To test this possibility, we first monitored the frequency of animal movements using open-field locomotor assay (31). Whereas the activity in wild-type mice decreased when they adapted to the test cage, physical movement of wild-type mice was significantly augmented compared with control mice. In contrast, no obvious difference was observed in PIKE-null mice, indicating PIKE-A’s role in controlling metabolic activity (Fig. 5D).
PIKE**/−** mice remained substantially higher throughout the experiment in both diet conditions (Fig. 5C). We also examined the metabolic rate using metabolic cages (23). Respiratory exchange ratio was lower in PIKE**/−** animals in both diet treatments, suggesting that mutant mice have a higher fatty acid catabolism (Fig. 5D). This suggested high lipid oxidation was further supported by the high phosphorylation level of AMPK and ACC in PIKE**/−** muscle, brown adipose tissue (BAT), and WAT. AMPK phosphorylation was reduced after HFD feeding in wild-type BAT and WAT. However, AMPK in PIKE**/−** WAT remained highly phosphorylated in both feeding groups (Fig. 5E, first and tenth panels). In parallel, phosphorylation of ACC in PIKE**/−** BAT and WAT was higher than the control group (Fig. 5E, third, fourth, and 12th panels). Whereas AMPK expression in WAT remained unchanged after HFD feeding, AMPK in BAT was greatly reduced in both genotypes (Fig. 5E, second and 11th panels). Expression of ACC was reduced after HFD treatment in both wild-type and PIKE**/−** BAT and WAT (Fig. 5E, fifth and 13th panels). Interestingly, PIKE**/−** BAT has higher ACC expression (Fig. 5E, 13th panel). Similar phosphorylation pattern occurred in both AMPK and ACC in PIKE**/−** muscle (Fig. 5E, sixth and eighth panels) with unchanged
protein levels (32) (Fig. 5E, seventh and ninth panels). In contrast, no significant changes in hypothalamic AMPK and ACC phosphorylation were found in PIKE^{−/−} animals in both feeding conditions (supplementary Fig. 3A). Moreover, AMPK and ACC phosphorylation was not enhanced in PIKE^{−/−} MEFs (supplementary Fig. 3B). These results suggest a tissue-specific effect of PIKE-A in modulating AMPK and ACC activity. We have also performed the fatty acid oxidation assay in cultured PIKE^{−/−} muscle cells and hepatocytes. In agreement with the immunoblotting analysis in Fig. 5E, an elevated palmitate oxidation rate was detected in PIKE^{−/−} muscle cells but not hepatocytes (Fig. 5F).

Therefore, the high physical activity of PIKE^{−/−} mice and enhanced lipid oxidation in BAT, WAT, and muscle may account for their lean phenotype during HFD feeding. The higher AMPK phosphorylation in PIKE^{−/−} mice may account for their specific effect of PIKE-A in modulating AMPK and ACC activity. We have also performed the fatty acid oxidation assay in cultured PIKE^{−/−} muscle cells and hepatocytes. In agreement with the immunoblotting analysis in Fig. 5E, an elevated palmitate oxidation rate was detected in PIKE^{−/−} muscle cells but not hepatocytes (Fig. 5F).

FIG. 5. Enhanced lipid oxidation in PIKE^{−/−} mice. A: Serum triglyceride level of wild-type (+/+) and knockout (−/−) mice (8–9 months old) that have been fed with chow or HFD for 20 weeks. Results were expressed as mean ± SEM (n = 4; ***P < 0.001 vs. the same genotype; one-way ANOVA). B: Hematoxylin-eosin (H&E) (upper panel) and oil red O (lower panel) staining of liver sections collected from wild-type (+/+) and knockout (−/−) mice (8–9 months old) that have been fed with HFD for 20 weeks. Scale bar represents 50 μm. Representative result of three mice from each genotype is shown. C: Spontaneous activity of wild-type (+/+) and PIKE knockout (−/−) mice fed with chow or HFD for 14 weeks. Results were expressed as mean ± SEM (n = 7; *P < 0.05, ***P < 0.001 vs. the same diet). D: Oxygen consumption (top panel), CO₂ release (middle panel), and respiratory exchange ratio (bottom panel) in wild-type (solid bar) and knockout (open bar) mice fed with chow and HFD for 20 weeks (n = 4). Results were expressed as mean ± SEM (**P < 0.01, ***P < 0.001 vs. the same diet; a: P < 0.05, c: P < 0.01 vs. the same genotype, one-way ANOVA, n = 4). E: Analysis of ACC and AMPK phosphorylation in wild-type (+/+) and knockout (−/−) mice (8–9 months old) that have been fed with chow or HFD for 20 weeks. Extracts of inguinal WAT, BAT, and muscle were prepared and immunoblotted with phosphor–Thr¹⁷²-AMPK, phosphor–Ser⁷⁹-ACC, total AMPK, and ACC antibodies. F: Elevated fatty acid oxidation in PIKE^{−/−} muscle cells. Rate of 3H-palmitate oxidation was measured in cultured skeletal muscle cells and hepatocytes isolated from wild-type (+/+) and PIKE knockout (−/−) mice. Results were expressed as mean ± SEM (**P < 0.01, one-way ANOVA, n = 8). (A high-quality digital representation of this figure is available in the online issue.)

diabetes.diabetesjournals.org

FIG. 6. PIKE interacts with insulin receptor and is essential for insulin-suppressed AMPK phosphorylation. A: Diagrammatic representation of various myc-tagged PIKE-A truncates. PIKE-A is a GTPase containing a short NH$_2$-terminal, a GTPase domain (GTPase) for hydrolysis of GTP, a PH domain for phosphoinositol lipid interaction, and a COOH-terminal region (GAP-ANK) with sequence homology to ARF/GAP protein and ankyrin repeats. B: Mapping of the insulin receptor interaction domain in PIKE-A. Various myc-tagged PIKE-A truncation mutants as shown in A and His-tagged insulin receptor (His-IR) were cotransfected into HEK293 cells. The myc-tagged proteins were immunoprecipitated and the associated insulin receptor was detected using anti-insulin receptor antibody (top panel). Expression of His-IR (middle panel) and various myc-tagged proteins (lower panel) was also detected. C: Fyn phosphorylation of PIKE-A is important for insulin receptor interaction. HEK293
PIKE-A is essential for insulin-suppressed AMPK phosphorylation. Next, we sought to clarify the role of PIKE-A in modulating AMPK phosphorylation. Fyn knock-out (Fyn−/−) mice are lipodystrophic with enhanced AMPK activity in muscle and WAT (37). These metabolic characteristics highly resemble the phenotypes of PIKE−/− mice. Given that PIKE-A is a substrate of Fyn (38) and Fyn interacts with IRS-1 in an insulin-dependent manner (39), we hypothesized that PIKE-A may form a complex with Fyn and insulin receptor upon insulin stimulation, which is essential for insulin to suppress AMPK activity (40,41). In HEK293 cells, PIKE-A associated with insulin receptor through its NH2-terminal (1–72 amino acids) (Fig. 6A and B), in which their interaction could be enhanced by insulin stimulation (Fig. 6C, first panel). However, this interaction was abolished when the Fyn phosphorylation site (Tyr682 and Tyr774) in PIKE-A (PIKE-A YY) was mutated (Fig. 6C, first panel), suggesting Fyn phosphorylation is critical to the formation of PIKE-A/insulin receptor complex. The kinetics of insulin receptor/PIKE-A complex formation inversely correlated with the phosphorylation of AMPK (Fig. 6D, first and sixth panels). Remarkably, neither Thr172 nor Ser485/Ser491 phosphorylation (42) was altered by insulin in GST-PIKE-A YY–transfected cells (Fig. 4D, sixth and seventh panels), suggesting that PIKE-A binding to insulin receptor is critical to mediate the inhibitory action of insulin on AMPK phosphorylation. On the other hand, Akt phosphorylation was not affected in either wild-type PIKE-A or PIKE-A YY cells in response to insulin (Fig. 6D, fourth panel). The formation of PIKE/insulin receptor/Fyn complex was further demonstrated in muscle tissue. In vivo insulin injection in wild-type mice enhanced the formation of PIKE-A/insulin receptor complex, which was substantially reduced in Fyn−/− tissue (Fig. 4G, first panel). This complex was not detected in PIKE-null tissues (Fig. 6E, first panel). Our immunoprecipitation results also confirmed that the association of Fyn and insulin receptor in muscle is insulin dependent (Fig. 6E, second panel). Furthermore, the formation of Fyn/insulin receptor complex was not affected in PIKE-null tissues, suggesting that PIKE-A is not essential for their interaction (Fig. 6E, second panel). Thus, the interaction between PIKE-A and insulin receptor is important for insulin to suppress AMPK phosphorylation, which provides a possible explanation to the enhanced AMPK phosphorylation in PIKE−/− WAT and muscle.

DISCUSSION

One of the major findings in the current report is that PIKE-A is critical for adipocyte differentiation. Several lines of evidence support the role of PIKE-A in terminal adipocyte differentiation instead of preadipocyte formation. First, the mature adipocyte marker aP2 is significantly decreased during in vitro adipocyte differentiation in PIKE−/− MEFs, indicating PIKE-A is important for adipocyte differentiation (Fig. 3B and C). Second, PIKE-A expression is increased in fat tissue development of HFD-fed and ob/ob mice, which highlights its function in the process (Fig. 2H). Lastly, HFD induced comparable preadipocyte marker Pref-1 expression in both wild-type and PIKE−/− mice, indicating that formation of new adipocytes is normal in PIKE-null adipose tissue (Fig. 3A). Interestingly, we found a small portion of PIKE−/− MEFs was able to differentiate into mature adipocytes (Fig. 3B), and quantitative analysis revealed a small but statistically significant increment of lipid accumulation in PIKE−/− MEFs (Fig. 3C). This result indicates that a PIKE-A–independent mechanism is responsible for some adipocyte differentiation, which also accounts for the existence but not completely the absence of adipose tissue in PIKE−/− mice.

Ectopic lipid storage due to adipocyte differentiation defect is associated with hyperlipidemia and liver steatosis (43). However, we could not detect these pathologic conditions in PIKE−/− mice (Fig. 5A and B). It is thus reasonable to predict that the lipid spillover from adipocyte is metabolized in mutant animals. Our results that PIKE-null fat and muscle have significantly elevated AMPK and ACC phosphorylation suggest an elevated β-oxidation in these tissues (Fig. 5E), which is further supported by the enhanced fatty acid oxidation rate in the in vitro assay (Fig. 5F) and the low respiratory exchange ratio values (Fig. 5D). AMPK has been viewed as a fuel sensor for glucose and lipid metabolism. Once activated, AMPK initiates a concomitant inhibition of energy-consuming biosynthetic pathways and activation of ATP-producing pathways such as fatty oxidation in mitochondria (44). As a result, most of the lipids absorbed in PIKE−/− mice are oxidized as the energy source, which accounts for the lean phenotype during the HFD treatment.

The upregulated phosphorylation of AMPK and its downstream substrate ACC in PIKE-null muscle and adipose tissues indicates that PIKE-A negatively regulates the activities of these enzymes. This notion is further supported by the fact that PIKE-A is critical for insulin to inhibit AMPK phosphorylation in 293 cells (Fig. 6D). This upregulation of AMPK activity in PIKE−/− muscle and fat also provides a possible mechanism accounting for the elevated systemic insulin sensitivity, as AMPK and insulin signaling are intimately connected. Agonist-induced AMPK activation increases the glucose uptake in muscle (45). It also potentiates the insulin-stimulated glucose uptake by activating IRS-1 (35,36). A similar observation was made in cells were cotransfected with His-IR and GST alone, GST-tagged wild-type PIKE-A (WT), or Tyr682, 774F (YY) mutant. The GST proteins were pulled down by glutathione beads and the associated insulin receptor was examined using anti–insulin receptor antibody (first panel). Expression of His-IR (second panel) and various GST-tagged proteins (third and fourth panels) was detected. Phosphorylation of Akt (Ser473) was also examined to verify insulin action (fifth panel). Total Akt expression was checked as an indication of equal loading (sixth panel). D: Mutation of Fyn phosphorylation site impairs insulin-suppressed AMPK phosphorylation. HEK293 cells were first transfected with GST-tagged wild-type PIKE-A (WT) or Tyr682, 774F mutant (YY). After serum starvation for 24 h, the cells were stimulated with 100 nmol/l insulin for different time intervals. The PIKE proteins were pulled down by glutathione beads, and the associated insulin receptor was detected using anti–insulin receptor antibody (first panel). The phosphorylation of Akt (Ser473; fourth panel), AMPKα1 (Ser485/AMPKα2 (Ser485; seventh panel) was determined using specific antibodies. Expression of His-IR (second panel) and GST-PIKE-A (third panel) was verified. The amount of Akt (fifth panel) and AMPK (eighth panel) was detected to show equal loading. E: Insulin enhances PIKE-A and insulin receptor interaction in muscle. Overnight-fasted wild-type (+/+), Fyn knockout (Fyn−/−), and PIKE knockout (PIKE−/−) mice (3–4 months old) were injected with saline (−) or 5 units human insulin (+) through the inferior vena cava for 5 min. The muscles were then collected and homogenized, and the PIKE-A was immunoprecipitated using anti-PIKE antibody (first panel). The interaction of Fyn and insulin receptor was also examined by immunoprecipitation using anti-Fyn antibody (second panel). Phosphorylation of insulin receptor was examined as an indication of insulin stimulation (third panel). Total insulin receptor was also detected to indicate loading (fourth panel).
adipose tissue that treatment of adipocytes with AMPK
agonist AICAR enhanced basal glucose uptake by increasing
GLUT4 translocation (46). Long-term activation of
AMPK in mice increases the systemic insulin sensitivity
and protects animals from HFD-induced obesity and dia-
etes (34, 47), which is in agreement with our observations in
PIKE-/- mice. It is noteworthy that the alleviated
insulin resistance in PIKE-/- mice after HFD treatment
may be a result of reduced inflammation. Because reduced
circulating TNF-α could improve insulin sensitivity and
increase AMPK activity (48, 49), the low blood TNF-α in
PIKE-/- mice (Fig. 2G) may also contribute significantly
to improve the diet-induced insulin resistance.

Because the whole-body-knockout mice were used in
the present study, we cannot exclude the possibility that
deletion of PIKE-A in the brain causes a central effect to
modify whole-body activity and metabolism. Because
brain is the major site to control appetite and body weight
(50), where PIKE is highly expressed (Fig. 1D), it is
reasonable to suspect that reduced food intake (Fig. 2H)
and elevated physical activity (Fig. 5C) in PIKE-/- mice
are the primary causes of lean phenotype during HFD
hormetic. However, our data strongly support that periph-
eral ablation of PIKE-A does play a role in preventing
obesity development. First, the feeding behavior is com-
parable between wild-type and PIKE-/- mice fed a chow
diet, when lipatrophy is already obvious. Second, in-
duced differentiation in PIKE-/- MEFs is greatly impaired
(Fig. 3B), suggesting ablation of PIKE per se in MEFs is
adequate to suppress adipogenesis. Third, PIKE-A inter-
acts with the insulin receptor in a Fyn-dependent manner,
which is essential for insulin-induced AMPK phosphoryla-
tion in muscle (Fig. 6D). Deletion of PIKE in muscle,
therefore, would enhance the AMPK phosphorylation and
lipid oxidation (Fig. 5E and F). Lastly, isolated PIKE-/-
WAT and muscle, in which the metabolic influence by the
brain is eliminated, have higher 3H-2-deoxyglucose uptake
when stimulated by insulin (Fig. 4F).

Our data also suggest that the function of PIKE-A is not
restricted to enhance Akt activity alone. We have dem-
strated that PIKE-A physically interacts with the insulin
receptor, which is important for insulin to suppress AMPK
phosphorylation. Our data also provide a novel mechanis-
tic insight into the phenotypes observed in Fyn -/- mice
(37), as PIKE-A/insulin receptor association is Fyn depen-
dent. Conceivably, PIKE-A is a downstream target of Fyn
that inhibits the activity of AMPK during obesity develop-
ment. Thus, PIKE-A may represent an additional regula-
tory point, in addition to Akt, for insulin to suppress AMPK
phosphorylation.

In all, our results uncover the novel physiological func-
tions of PIKE-A, which plays important roles in obesity
development and the accompanied insulin resistance by
regulating AMPK activities negatively. Consequently, less
fat is deposited and the associated insulin resistance is
ameliorated. Therefore, PIKE-A may represent a potential
therapeutic target for obesity and the adjunct insulin resis-
tance.

ACKNOWLEDGMENTS

K.Y. has received a grant from the National Institutes of
Health RO1 (NS-045627).

No potential conflicts of interest relevant to this article
were reported.

Parts of this study were presented in poster form at the

REFERENCES

2. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in

2008;65:1086–1098

L, Vohl MC. Genome-wide linkage scan reveals multiple susceptibility loci
influencing lipid and lipoprotein levels in the Quebec Family Study. J Lipid
Res 2004;45:419–426

Bouchard C. A genome-wide linkage scan for dietary energy and nutrient
intakes: the Health, Risk Factors, Exercise Training, and Genetics (HER-

(phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity

7. Ye K, Aghdasi B, Lao HR, Morarity JL, Wu FY, Hong JJ, Hurt KJ, Bae SS,
Suh PG, Snyder SH. Phospholipase C gamma 1 is a physiological guanine
nucleotide exchange factor for the nuclear GTPase PIKE. Nature 2002;415:
541–544

8. Ye K, Aghdasi B, Lao HR, Morarity JL, Wu FY, Hong JJ, Hurt KJ, Bae SS,
Suh PG, Snyder SH: A nuclear gtpase that enhances PI3kinase activity
and is regulated by protein 4.1N. Cell 2000;103:919–930

new family of bifunctional GTP-binding and GTP-activating proteins. Mol
Cell Biol 2003;23:2476–2488

the coding sequences of unidentified human genes: V, the coding sequences
of 40 new genes (KIAA0161-KIAA0200) deduced by analysis of cDNA clones
from human cell line KG-1. DNA Res 1996;3:17–24

11. Rong R, Ahn JY, Huang H, Nagata E, Kalman D, Kapp JA, Tu J, Worley PF,
Snyder SH, Ye K. PI3 kinase enhancer-Homer complex couples mGluR to
PI3 kinase, preventing neuronal apoptosis. Nat Neurosci 2003;6:1153–1161

N, Xiong WC, Melphen P, Ye K. Notrin-1 mediates neuronal survival through
PI3K-L interaction with the dependence receptor UNC5B. Neuron 2002;20:
698–706

cancers and prevents apoptosis by up-regulating Akt. Proc Natl Acad Sci
U S A 2004;101:6993–6998

14. Liu R, Tian B, Gearing M, Hunter S, Ye K, Mao Z. Cdk5-mediated regulation of
the PI3-Akt pathway and glioblastoma cell invasion. Proc Natl Acad Sci
U S A 2008;105:7570–7575

15. Brookheart RT, Michel CI, Schafer JE. As a matter of cell. Cell Metab
2009;10:9–12

regulating whole-body energy homeostasis. Trends Mol Med 2008;14:
539–549

18. Ye K, Compton DA, Lai MM, Walensky LD, Snyder SH. Protein 4.1N
binding augments muscle glucose uptake. J Biol Chem 1996;271:
14834–14839

19. Chang FY, Jensen J, Printz RL, Cranmer DK, Ivy JL, Moller DE. Overex-
pression of hekoxinase II in transgenic mice: evidence that increased
phosphorylation augments muscle glucose uptake. J Biol Chem 1998;273:
4062–4067

JH, Lee WT, Lim SK. Peripheral effect of alpha-melanocyte-stimulating
hormone on fatty acid oxidation in skeletal muscle. J Biol Chem 2007;282:
2862–2870

Chung G, Kim YB, Kim JK. Differential effects of interleukin-6 and -10 on
skeletal muscle and liver insulin action in vivo. Diabetes 2004;53:1069–
1076

TC, Gardner TW, Bronson SK, Kim JK. Nonobese, insulin-deficient

892 DIABETES, VOL. 59, APRIL 2010 diabetes.diabetesjournals.org

